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Abstract

The ability to resolve electrons with energies as low as 5 MeV in liquid argon (LAr) is

important for future studies of astrophysical neutrinos in liquid argon time projection cham-

bers (LArTPCs). Existing methods for measuring the energy of electromagnetic showers in

LArTPCs rely solely on charge-based reconstruction which requires correcting for assumed

electron-ion recombination. However, LAr scintillation light has the potential to improve

energy reconstruction over charge-based measurements alone. Here we present a demonstra-

tion of a light-augmented calorimetric technique for low-energy electrons in LAr that foregoes

the need to correct for recombination. A sample of Michel electrons from stopping cosmic

muons is collected in LArIAT (Liquid Argon In A Testbeam), a single-phase LArTPC at

Fermilab’s Test Beam Facility. Michel electron energy spectra are reconstructed using both

a traditional charge-based approach as well as a more holistic approach that incorporates

both charge and light. A maximum-likelihood fitter, using LArIAT’s well-tuned simulation,

is developed for combining these quantities to achieve optimal energy resolution. A sample

of isolated electrons with Ee < 60 MeV is then simulated to better determine the energy res-

olution of this topology. Due to LArIAT’s low wire noise, the addition of light is not found to

significantly improve upon the achieved charged-based resolution of σ/E ≃ 9%/
√
E ⊕ 1%.

However, additional samples are generated with varying wire noise levels and light yields

to gauge the impact of light-augmented calorimetry in large LArTPCs such as DUNE and

SBND. At a charge-readout signal-to-noise of ≈10, the energy resolution for low-energy elec-

trons is improved by ∼15%, ∼25%, and ∼45% over charge-only calorimetry for average light

yields of 10, 20, and 100 pe/MeV, respectively.

xix
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Introduction

“Nature has conservation of energy, but does not really care;

she spends a lot of it in all directions.”

– Richard Feynmann, Six Easy Pieces

About 1038 neutrinos are born in the Sun’s core every second, nearly every one destined

to stream across the Universe for billions of years unimpeded. Only about one out of every

two billion will pass through the Earth on its way out of the solar system, a vast majority

of them flying through the planet as if it weren’t there. In fact, neutrinos are produced

all across the Universe. We are bathed in them; 65 billion per second pass through every

square centimeter. They come from burning stars, energetic particle interactions, and from

every source of radioactivity, including the rock and soil we stand upon. Some come from

supernova explosions, and some are remnants from the Big Bang itself. In the words of

Frank Close, “if we could see with neutrino eyes, night would be as bright as day” [1].

The idea of the neutrino (ν) – a “desperate remedy” to explain the continuous energy

spectrum of electrons from radioactive decay – was first put forth in 1930 by Wolfgang Pauli.

Enrico Fermi built upon this idea several years later with his theory of beta decay in which

the emission of an electron-neutrino pair from a decaying nucleus was modeled following the

same framework used to describe the emission of photons by excited atoms [2]. It wasn’t

until 1956 that the first experimental evidence confirming the existence of the neutrino was

produced by Frederick Reines and Clyde L. Cowan, Jr. To accomplish this, Reines and

Cowan used two 200-liter tanks filled with water to detect the time-separated scintillation

light signals produced by the annihilation of the outgoing positron and the capture of the

outgoing neutron from inverse beta-decay interactions of neutrinos (or more specifically,

antineutrinos, ν̄) emitted by a nuclear reactor at Savannah River, South Dakota [3].

We have learned a substantial amount about neutrinos since their discovery over 60 years
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ago. Experiments have shown they oscillate between flavors, a beautiful discovery which by

itself implies they have mass and thus defies the Standard Model as we know it. Their

mass differences and the mixing angles that parameterize the mass eigenstate content of

each flavor-state have been measured [4]. However, despite their being the second-most

abundant elementary particle in the Universe, neutrinos still remain the least-understood in

the Standard Model of particle physics. We still don’t know their absolute mass scale, relative

mass ordering, nor whether this mixing is asymmetric between neutrinos and antineutrinos,

a finding that would indicate a new source of charge-parity (CP) violation in particle physics.

There are even hints of possible new physics in the neutrino sector such as the existence of

heavier “sterile” states that don’t interact through the weak force [5, 6].

The next generation of experiments centered at Fermilab will unravel many of these puz-

zles by measuring oscillations of accelerator neutrinos over both short and long distances.

The liquid argon time projection chamber (LArTPC) is the technology of choice in this new

era of neutrino research. These detectors are ideal for reconstructing neutrino final-state

topologies given their precise 3D particle tracking, calorimetric capabilities, and scalability

to large active volumes. The Short-Baseline Neutrino (SBN) Program, which will measure

neutrino cross-sections and oscillations along the Booster beamline over a baseline of ≈1 km,

is presently underway with MicroBooNE already running and the Short-Baseline Near De-

tector (SBND) and ICARUS far detector soon to be installed [7]. The Deep Underground

Neutrino Experiment (DUNE), a massive LArTPC to be built over the next decade, will

make precision neutrino oscillation measurements for neutrinos traveling 1300 km through

the Earth [8, 9].

DUNE’s large active volume will also enable the detection of neutrinos from the Sun [11]

and – if we are lucky – from galactic core-collapse supernovae [12]. Of these low-energy

astrophysical neutrinos, LAr is most sensitive to interactions of the electron-type (νe). These

events will feature an electron on the order of 10s of MeV or less emanating from the

neutrino interaction point. This energy will go into ionizing and exciting Ar atoms which,
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through recombination and de-excitation channels, will ultimately result in the production

of detectable quantities of free electrons (charge) and scintillation photons (light) in roughly

equal amounts. Traditionally, only the collected charge is used to perform calorimetric

measurements, but the addition of light has the potential to improve energy resolution.

This thesis presents results from the LArIAT (Liquid Argon In A Testbeam) Experiment

at Fermilab in which light and charge are combined to reconstruct the energies of electrons.

LArIAT is a 170-liter active volume LArTPC that operated in the Fermilab Test Beam

Facility from 2015 to 2017. The unique design of LArIAT’s light detection system allowed

it to collect a much larger fraction of generated scintillation light compared to previous

LArTPCs. This light allowed us to engineer a trigger on the delayed decay electrons from

cosmic muons that come to rest in the TPC volume during the dedicated cosmic readout

period following every beam spill. Both charge and light from these electron events are

reconstructed and used in calorimetry to achieve an energy resolution that improves upon

that from charge-only energy measurements.

First, in Chapter 2, the current state of neutrino physics is reviewed, and ongoing efforts

to use LArTPCs to answer open questions in the field are used to motivate the need for

improved calorimetry at low energies. Chapter 3 discusses the physics of energy deposition

by charged particles in LAr and how this energy is divided into observable quantities of

charge and light. The LArIAT Experiment and its light collection system is introduced

in Chapter 4. In Chapter 5, the Michel electron sample is introduced and Michel-specific

reconstruction needed to extract information about the charge and light deposited by the

decay electrons is described. The reconstructed muon decay time spectrum is also presented

in order to validate the sample through literature-compatible measurements of the negative

muon capture lifetime and the cosmic muon charge ratio. Calibrations needed to correct

the measurements of charge and light – including response calibrations for the wires and

photodetectors as well as electron attenuation lifetime measurements to compensate for

charge lost during the drift – are explained in Chapter 6. The Monte Carlo (MC) simulation
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of the LArIAT detector is described in Chapter 7. In Chapter 8, the corrected charge and

light measurements are finally presented and used to produce Michel electron energy spectra,

which are compared to MC. The MC is used to evaluate the energy resolution in LArIAT.

These MC studies are expanded in Chapter 9 to make projections of the achievable energy

resolution of isolated low-energy electron showers in larger LArTPCs like DUNE. Finally,

some concluding remarks are offered in Chapter 10.

The LArTPC is still a relatively young technology in neutrino physics, and reconstruc-

tion techniques are under active development. With the work presented here, we hope to

contribute to efforts in maximizing the effectiveness of these detectors – pushing them to

their limits to extract as much physics as possible from the data they have to offer.
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2

Detecting Neutrinos with Liquid Argon TPCs

“Nature does not hurry, yet everything is accomplished.”

– Lao Tzu

This chapter reviews our present understanding of neutrino physics and how it is motivat-

ing new experimental efforts using liquid argon TPCs, setting the stage for all that follows.

In Section 2.1, a theoretical overview of the physics underlying the existence of neutrinos

within the Standard Model is presented along with the phenomena of neutrino oscillations

and its implications. Section 2.2 discusses the puzzles about neutrino behavior that remain

to be solved, while Section 2.3 introduces the LArTPC technology behind the experiments

underway or being planned to address some of these puzzles. In Section 2.4 we discuss some

of the more exotic studies that would be possible in a large underground LArTPC, including

the detection of neutrinos from astrophysical sources. Finally in Section 2.5, we lay out the

importance of low-energy electron reconstruction capabilities in such a LArTPC and present

results from previous experiments that have attempted to reconstruct this topology in LAr.

2.1 Neutrino physics: what we know

The Standard Model (SM) is an effective quantum field theory that describes the strong,

weak, and electromagnetic interactions. It is constructed from boson (integer spin) and

fermion (spin-12) fields that pervade all of space, governed by a local SU(3) × SU(2) ×U(1)

gauge symmetry. Figure 2.1 illustrates the full set of particles comprising the SM.

Neutrinos are among the spin-12 fermions in the SM known as leptons. They arise natu-

rally as solutions to the massless (m = 0) Dirac equation [13],

iγµψ = 0, (2.1)
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Figure 2.1: The fundamental particles of nature as described by the Standard Model [14].

which divides into two decoupled equations of two-component spinors describing left-handed

(νL and νR) and right-handed (νR and νL) neutrino fields. Because neutrinos are presumed

to interact only through the weak force, they lack any color or electrical charge. Further, due

to the vector-axial (V -A) structure of the weak current, which maximally violates parity by

acting only on left-handed states (famously confirmed through the observation of outgoing

β from polarized cobalt nuclei by Wu in 1956 [15]), it is only νL (or νR) which can interact

with charged leptons. This leaves any hypothetical νR states unobservable [13]. The fermions

of the SM can therefore be described by six left-handed isodoublets and nine right-handed

isosinglets:
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Aside from neutrinos, all the remaining fermions acquire mass in the SM through spon-

taneous symmetry breaking via the Higgs mechanism, which relies on a coupling between

the left- and right-handed fields [13]. However, experiments have revealed that at least some
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of the neutrinos do, in fact, have mass [16]. The SM can be extended to accommodate mas-

sive neutrinos (in a way that preserves the conservation of lepton number exhibited in the

unmodified SM) through the addition of a “Dirac mass term”, LD, to the SM Lagrangian:

LD = −mDνLνR + h.c. (2.2)

where mD is a constant and νR is the right-handed neutrino field that is omitted in the SM

but must be added to generate mass [17]. However, neutrino mass can also be generated

in a Lorentz-invariant way that requires only one of the neutrino fields, though this would

require that the neutrino is its own antiparticle and lepton number is not conserved. If these

are true, then the SM Lagrangian allows for “Majorana mass terms” of the form

LM = −mMνCν + h.c. (2.3)

where νC is the charge-conjugate of the neutrino ν. As of now, it is unknown whether

neutrinos are their own antiparticle (i.e., Majorana particles). Experiments looking for

neutrinoless double-β decay will help determine whether or not this is the case.

Neutrinos react with other particles exclusively through the weak force either by the

exchange of a charged W+/− or neutral Z boson – referred to as charged-current (CC)

and neutral-current (NC) interactions, respectively. In NC interactions of neutrinos and

free nucleons (N), the incoming ν effectively scatters off the nucleon, νN → νN , and

the final-state consists of an outgoing (invisible) ν as well as a recoiling N . However, for

CC interactions off of protons or neutrons (p or n), an outgoing charged lepton (ℓ) of the

same flavor-type as the incoming neutrino or antineutrinos is produced in the final state:

ναn→ ℓ−α p, or ν̄αn→ ℓ+α .

Because neutrinos interact only through the weak force and gravity, we can only probe

their weak flavor states (e, µ, τ). We know neutrinos have non-zero masses from the ex-

perimental confirmation of a phenomenon called “neutrino oscillations” in which a neutrino
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changes its flavor-state over time as it propagates [16]. In other words, a neutrino born of

flavor α will, after traveling through some distance, behave as if it were of a different flavor

β, thus producing an outgoing β lepton in a CC interaction. Since it is the mass eigenstates

that govern the time-evolution of a neutrino, the fact that flavor-state oscillations occur

implies that the mass eigenstates (|νi〉) and weak flavor eigenstates (|να〉) are not the same.

A neutrino of flavor α is thus a quantum superposition of the mass eigenstates,

|να〉 =
∑

i

U∗
αi |νi〉 , (2.4)

where U is a unitary leptonic mixing matrix. Most experimental results point to there being

three mass eigenstates (i = 1, 2, 3), suggesting U is a 3 × 3 matrix. The transformation

between the flavor basis to the mass eigenstate basis is carried out using a form of this

matrix called the Pontecorvo-Maki-Nakagawa-Sakata matrix (UPMNS):









νe

νµ

ντ









=









Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









︸ ︷︷ ︸

UPMNS

×









ν1

ν2

ν3









(2.5)

The matrix UPMNS can be written as

UPMNS =









c12 s12 0

−s12 c12 0

0 0 1









︸ ︷︷ ︸

solar









c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13









︸ ︷︷ ︸

cross-mixing/reactor









1 0 0

0 c23 s23

0 −s23 c23









︸ ︷︷ ︸

atmospheric

, (2.6)

where cij = cos θij and sij = sin θij . In this representation, θij are “mixing angles” and

δ is a CP-violating phase1. The three quantum mass eigenstates interfere constructively

1. Here we have excluded any CP-violating phases one would expect if neutrinos were Majorana particles.
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or destructively as the neutrino propagates, resulting in flavor-state oscillations that are

dependent on the length of travel (L). Given this, the amplitude for a neutrino of flavor α

of energy E to change to flavor β is given by

ψνα→νβ =
∑

i

U∗
αie

−im2
iL/(2E)Uβi. (2.7)

Squaring this amplitude, we arrive at the probability of oscillation [17],

|ψνα→νβ |2 = Pνα→νβ = δαβ − 4
∑

i>j

R
[

U∗
αiUβiUαjU

∗
βj

]

sin2
(

∆m2
ij
L

4E

)

(2.8)

+ 2
∑

i>j

I
[

U∗
αiUβiUαjU

∗
βj

]

sin

(

∆m2
ij
L

2E

)

where ∆m2
ij = m2

i −m2
j . We see that the oscillation probability is a function of L/E and

that the mass splittings ∆mij must be non-zero.

For a beam of neutrinos of known flavor να, oscillations can be probed by looking for

either the appearance of νβ (Papp = Pνα→νβ ), or for the disappearance of να (Pdisapp =

1−Pνα→να) assuming the beam flux is known to sufficient precision. Experimentalists often

simplify the oscillation probability formula by assuming that the mass splittings between the

different mass eigenstates are vastly different in scale – i.e., ∆m2
12 ≪ ∆m2

23 – implying highly

disparate oscillation length scales. Under this assumption, only one splitting is important

for any given experiment, and the oscillation probability can be approximated as a function

of the mixing angle θ associated with the relevant mass states dominating the oscillation,

Pνα→νβ = sin2 (2θ) sin2
(

1.27∆m2[eV2]
L[km]

E[GeV]

)

, (2.9)

where the previously-omitted factors ‘~’ and ‘c’ have been added back in and absorbed

into the numerical factor in the sin-squared argument. It is clear from Equation 2.9 that

an experiment’s ability to measure an oscillation pattern is a function of the ratio of its
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Figure 2.2: A schematic of the neutrino squared-mass spectrum assuming three mass eigen-
states and a “normal” mass-ordering. The flavor content of each mass state is illustrated
based on existing experimental results (excluding those from LSND) [17].

oscillation baseline to the neutrino energy, L/E, as well as the magnitude of the mass

splitting. For comparable E, it follows that experiments using shorter baselines are more

sensitive to oscillations dominated by high-∆m2 splittings, whereas longer baselines will

more effectively probe oscillations from small ∆m2.

It is illuminating to decompose mixing matrix UPMNS into three component matrices

as we’ve done in Equation 2.6 because it highlights the different oscillation length scales and

thus the nature of the experiments that measured their mixing angles. Figure 2.2 illustrates

the three-neutrino mass spectrum for a normal mass ordering (m1 < m2 < m3) as well as

the inferred flavor content of each mass state, while Table 2.1 summarizes existing neutrino

mixing angle and mass splitting measurements.

The oscillation probabilities presented so far have been computed for neutrinos traveling

through vacuum. In reality, the presence of matter will slightly alter these derived results.

This comes about via the possibility of coherent forward scattering of νe through W±-boson

exchange with bound electrons in atoms, which adds an extra interaction potential energy

to the νe. For electron-type antineutrinos, ν̄e, the potential energy term has the same

10



Table 2.1: Existing measurements of the three neutrino mixing angles, for a normal mass
hierarchy, taken from a global analysis of oscillation results done in [18]. Here, ∆m2 =
m2

3 − (m2
1 +m2

2)/2, which is approximately equal to ∆m2
13 and ∆m2

23.

Parameter Value

θ12 (“solar mixing angle”) 33+10
−11 degrees

∆m2
12 (≈ ∆m2

sol) 7.37+0.17
−0.16 × 10−5 eV2

θ23 (“atmospheric mixing angle”) 41.4+1.9
−1.2 degrees

∆m2 (≈ ∆m2
13 ≈ ∆m2

23 ≈ ∆m2
atm) 2.50 ± 0.04 × 10−3 eV2

θ13 (“reactor mixing angle”) 8.4 ± 0.2 degrees

magnitude but with opposite sign. These contributions raise the effective mass of νe in

matter while reducing the effective mass for ν̄e [17].

2.2 Open questions in neutrino physics

Despite all that has been learned about neutrinos, there remain many open questions that

current and future experiments will address. The most prominent ones that can be answered

through accelerator-based neutrino oscillation experiments, which are most relevant to topics

addressed in this thesis, are outlined below.

• How many neutrino species are there? Results from the Liquid Scintillator Neutrino

Detector (LSND), which looked for ν̄e in a beam of νµ over a short baseline, showed

an excess of detected ν̄e compared to expectations [5]. The best-fit mass splitting,

∆m2
LSND = 1.2 eV2, cannot be explained by the extended 3-ν SM described previously

in this chapter. The MiniBooNE Experiment at Fermilab reported a similar excess of

electron-like neutrino events, though the background was dominated by photon-induced

showers from NC events which were misidentified as electrons [6]. If such excesses are

to be explained by neutrino oscillations, and not by a misidentification of background,

clearly the 3-ν model is insufficient and new mass eigenstates must be proposed. Due to
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constraints from LEP at CERN [19] on the total number of weakly-interacting neutrino

species (Nν = 2.984 ± 0.008), any new massive neutrinos would not interact through

the weak force and would be termed “sterile.”

• Do neutrinos violate charge-parity (CP) conservation? If equal amounts of matter and

antimatter were produced by the Big Bang as conservation and symmetry arguments

suggest, then the presently-observed dominance of matter over antimatter must have

arisen due to some CP-violating physical process in which particles and their anti-

matter partners behave differently. While CP-violation has been observed in quark

interactions, as predicted in the SM, the effect is too small to explain the matter-

dominated Universe in which we find ourselves. The discovery of leptonic CP-violation

– for example, an observed difference in oscillation behavior between ν and ν̄ – could

help explain this imbalance if the effect is sufficiently significant. One natural way this

can come about is through what is known as the see-saw mechanism in which the in-

terplay between Dirac mass terms and the mass term of heavy right-handed Majorana

neutrinos N of mass M results in an effective mass term for the left-handed neutrinos

which is inversely proportional to M . Such heavy neutrinos would have been produced

in the Big Bang and subsequently decayed to charged leptons as the Universe cooled.

If the decay rate Γ is different between these heavy neutrinos and their antiparticles

(Γ[N → ℓ+...] 6= Γ[N → ℓ−...]), the resulting imbalance in leptons and antileptons

would have led to a corresponding imbalance in the baryons as well through sphaleron

processes [16, 17]. An observation of non-zero δ in the PMNS matrix would be a

signature of leptonic CP-violation.

• How are the neutrino mass states ordered? While oscillations can reveal the differences

in the mass eigenstates, they don’t necessarily tell us about the hierarchy of the mass

spectrum – ie, whether m3 > m1 (normal hierarchy) or m3 < m1 (inverted hierarchy).

Knowledge of the hierarchy of mass states is important in interpreting results from neu-
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trinoless double-beta decay experiments and can provide critical input to astrophysical

models of the evolution of the early universe [20].

These questions are motivating a new generation of neutrino experiments at both short

and long oscillation baselines. In the next section, we introduce the technology that underlies

many these efforts, the liquid argon time projection chamber (LArTPC).

2.3 LArTPCs for neutrino detection

Given the extremely small interaction cross-section of neutrinos, a neutrino detector must

compensate by offering a large volume of target material in which the neutrinos can interact.

Liquid argon (LAr) is a relatively inexpensive noble element, making it well-suited as a target

medium for neutrino detection. It turns out it offers several other advantages for neutrino

physics as well, which will be addressed later.

Time projection chambers (TPCs) rely on the the collection of free electrons produced

along the trails of ionizing particles in a medium (traditionally gaseous) by drifting them

across a uniform electric field toward an “anode” of wire planes equipped with readout

electronics. Such detectors are capable not only of reconstructing particle tracks in two and

three dimensions (2D and 3D), but also act as total-absorption calorimeters since nearly all

energy a particle loses goes into producing ionization electrons and scintillation light which

can be observed (see Section 3.2). While the use of LAr as a working medium in ionization

chambers was first proposed in 1974 by W. J. Willis and V. Radeka [21], it was Carlo

Rubbia who applied the idea toward neutrino detection in 1977 [22, 23]. The cartoon in

Figure 2.3 illustrates the operation of a LArTPC for detecting the final states from neutrino

interactions.

LArTPCs offer several key advantages for neutrino physics. First, LAr is relatively

dense compared to gaseous media that were traditionally used in TPCs, resulting in more

Ar atoms per unit area and thus increasing the probability of neutrino interactions. The
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Figure 2.3: Illustration of charged particles emerging from a neutrino interaction and pro-
ducing ionization tracks in a LArTPC.

increased density also results in a higher rate of energy loss for charged particles, and thus

larger and more visible signals on the wires.

LArTPCs are currently being employed to address some of the burning questions in

neutrino physics outlined in Section 2.2. The search for sterile neutrino states is being carried

out at Fermilab through the Short-Baseline Neutrino (SBN) Program, which employs three

LArTPCs – SBND [7], MicroBooNE [24], and ICARUS [23] – along a beam of primarily νµ

over a baseline of ≈600 km. Results from SBN will address the low-energy excess observed by

MiniBooNE and LSND and discover or set new limits on the existence of a sterile neutrino

state with ∆m2 ∼ 1 eV2. The ability of the LArTPC to spatially reconstruct particle

tracks will be a critical factor in this goal since this will allow for the distinction of electron-

from photon-induced electromagnetic (EM) showers. These two topologies produced similar

signals in MiniBooNE, a detector which looked for rings produced by Cherenkov light, but

LArTPCs are able to exploit two important identifying features. A photon, being a neutral
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particle, will travel some distance from the neutrino interaction point before pair-producing

and forming an EM shower, leaving a separation “gap” between the interaction point and

the beginning of the shower in which no charge is deposited. However, an electron will

begin showering immediately, leaving no such gap. The rate of energy loss (dE/dx) will

also be approximately twice as high at the start of photon showers due to ionization from an

electron-positron pair produced from the photon. The LArTPCs in SBN will more effectively

identify these two topologies, thus minimizing background in an appearance search for νe.

The Deep Underground Neutrino Experiment (DUNE) [9, 10] represents another promi-

nent example of LArTPC technology at the forefront of neutrino physics. DUNE will con-

sist of a LArTPC built 1.5 km underground at the Sanford Underground Research Facility

(SURF) in South Dakota, USA. This “far detector” will be a modular LArTPC comprised

of four separate volumes, each 10 kilotons in volume. DUNE’s far detector will detect neu-

trinos produced 1,300 km away at Fermilab’s Long Baseline Neutrino Facility (LBNF). One

of the chief goals of DUNE will be to determine whether neutrinos violate CP-symmetry.

For example, expanding the terms in the probability distribution in Equation 2.7 results in

CP-odd terms, dependent on the CP-violating phase δ, which differ in sign between ν and

ν̄. If δ 6= 0 these result in measurable differences in the oscillations of ν versus ν̄. Results

from DUNE will also be able to determine the neutrino mass hierarchy.

2.4 Studies enabled by a large underground LArTPC

The far detector of DUNE, given its location 1.5 km underground, will be shielded from

most cosmic rays that plague LArTPCs at the surface with passing cosmic muons which

overlap with the readout window. This will give DUNE a relatively “quiet” environment in

which neutrino events will be isolated both spatially and temporally without complications

from overlapping cosmic muons. This, together with its massive size (40 kt of active LAr

volume) and low energy threshold (& 1 MeV), will expand DUNE’s physics reach toward

more exotic studies including searches for nucleon decay and detection of neutrinos of as-
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Figure 2.4: The DUNE and LBNF project. A neutrino beam is produced at Fermilab and
directed through the earth toward the DUNE far detector located 1.5 km underground [10].

.

trophysical origin [9]. Here we describe the physics of core-collapse supernovae neutrinos as

well as neutrinos produced in the Sun, and touch upon what DUNE will be able to teach us

about particle physics and astrophysics through related studies.

Core-collapse supernova neutrinos

The iron cores of massive stars, as they age, continuously lose energy which is carried away

by neutrinos from pair-annihilation and plasmon decay. This lost energy results in the core

continuing to collapse in on itself. Over time, more iron is accreted onto the core from the

burning of lighter elements in its surrounding layers. Eventually the core reaches a critical

mass (about 1.4 times the mass of the Sun) at which the density and temperature are so high

that electrons are absorbed into protons and some of the iron is disintegrated by thermal

photons. With the outward pressure suddenly absent, the core collapses in on itself in free-

fall until nuclear densities are reached (∼ 10−2 seconds), after which it rebounds as an

outward-propagating shock wave forms. At these extreme densities (ρ ∼ 1012-1014 g/cm3)

even neutrinos cannot propagate freely without significant scattering [9].

The gravitational energy of the collapsed core is, at this point, stored among electrons

and νe which are unable to immediately escape. When they do escape, about 99% of the
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Figure 2.5: Core-collapse supernova ν signals expected based on the Basel model for a 10.8
solar-mass star. The top row shows the intensity over time, while the bottom row shows the
average energy over time, separated by neutrino flavor [25, 26].

core’s binding energy is released in a burst of ν of all flavors – about 1058 in total, each with

an energy of approximately 10 MeV. This neutrino emission from the supernova (SN) event

persists for about 10 seconds total, including an initial short “neutronization” burst of νe

at t < 0.01 sec, followed by an accretion phase at t ∼ 0.5 − 1 sec in which a variety of ν

flavors are emitted as stellar matter continues to fall into the core and delays the progress

of the outgoing shock-wave. Finally there is a “cooling phase” characterized by a gradual

decrease in the ν intensity that extends for ∼ 10 sec [9]. Plots of the neutrino flux over time

for core-collapse SN, based on simulations, are shown in Figure 2.5.

A star can also undergo an “electron capture” (EC) type SN in which the final stages of

burning are never reached. The ν signal from an EC SN is similar to that from core-collapse

SN in terms of time evolution and energy spectra.

The last (and only) observation of ν from a supernova was from SN1987A in 1987. Both

the IMB [27] and Kamiokande-II [28] water Cherenkov detectors saw a ν signal in coincidence

with the SN, with a grand total of 19 detected νe arriving over a ∼ 10 second period between

the two of them. Thanks to its large active volume, DUNE will (in principle) be able to

observe a substantially larger signal! As evidenced in Figure 2.6, LAr is most sensitive to

the CC interaction of electron-type neutrinos, νe + Ar → e− + K∗. For a core-collapse SN
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Figure 2.6: Cross-sections for neutrino interactions relevant to supernova emission [29, 30].

10 kiloparsecs (kpc) away, DUNE is expected to see 2700-3300 CC-νe interactions total [9].

In Figure 2.7, the number of expected events is plotted versus time (left) and energy (right).

Solar neutrinos

There are several avenues through which DUNE could make significant contributions to par-

ticle physics and astrophysics by studying neutrinos from the Sun. For example, presently

there exists a ∼ 2-σ discrepancy between the best-fit measurement of ∆m2
12 from solar neu-

trino experiments compared to those from reactor-based experiments. While the JUNO [32]

experiment will soon improve the constraints on the reactor measurements, additional im-

provement on the solar measurement is needed in order to fully break the ambiguity and

potentially probe new physics. In addition, precise measurements of the flux of neutrinos

from 8B beta-decay (Eν = 18 MeV) and the discovery of the hep neutrino flux would help

increase our understanding of solar astrophysics [11]. The advantages DUNE offers for solar

neutrinos mirror those that enable the detection of SN neutrinos: an inherent overburden
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Figure 2.7: Simulated time-dependent ν signal in 40 kt of LAr from an electron capture SN
10 kpc away (left), and the energy spectrum of ν integrated over arrival times (right) [31].

.

due to being located underground as well as a low-energy threshold down to a few MeV.

However, it is expected that some modifications to the baseline design plans would need to

be implemented in order to fully realize DUNE’s potential for solar neutrino studies – specif-

ically, better data acquisition capabilities and improved rejection of ∼ MeV backgrounds

from neutrons produced in the rocks surrounding the detector and capturing on Ar within

the fiducial volume [11]. Figure 2.8 shows the expected distributions of visible energy from

solar neutrino interactions in DUNE.

2.5 Motivation for low-energy calorimetric capabilities

As evidenced in Figures 2.7 and 2.8, astrophysical ν events extend to the lowest energies

accessible in DUNE (Eν ∼ 5-50 MeV). DUNE’s ability to accurately resolve energies down

to this level is critical to enabling studies of SN and solar ν, since poor energy resolution

will have the effect of “smearing” low-energy backgrounds to higher energies, crowding out

signal regions and degrading the sensitivity of analyses.

For SN ν, an anticipated energy resolution of σ/E < 10% in the 5-100 MeV range will

be needed in order to effectively resolve features in the SN ν energy spectrum and probe

the relevant physics [12]. For solar ν, the estimated requirement is even more stringent at
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Figure 2.8: Visible energy expected from solar 8B and hep ν signal and background in
DUNE over a total exposure of 100 kton years for CC-interactions and elastic scattering
(ES) interactions. Looking either inside (left) or outside (right) a forward-going cone of
half-angle 40◦ changes the relative spectra for different event types [11].

σ/E < 7% in order to ensure backgrounds from the end-point energies of products from the

42Ar and 222Rn decay chains (≈ 3.5 MeV) are low enough to avoid appreciably contaminating

the low-energy tail of the signal [11].

Good energy reconstruction at low energies will also enhance the reach of oscillation

analyses in SBN and DUNE detectors through more efficient tagging of 4.1-MeV muons

from pion decay-at-rest and of < 53 MeV Michel electrons from stopping muons. Tagging

such features will help identify final-state topologies from ν interaction events [12].

Several LArTPCs have performed analyses from which energy resolution estimates were

extracted for low-energy electrons using decay electrons from stopping cosmic muons. These

are commonly referred to as Michel electrons and exhibit an energy distribution ranging from

0-53 MeV, which has significant overlap with the energy range relevant for astrophysical ν

studies outlined earlier (Michel electrons will be discussed in greater detail in Chapter 5).

In a study carried out by the ICARUS experiment [23], the spectrum of energy deposited

directly by the decay electron ionization tracks (Eion) was reconstructed and compared to

MC, and the good data-MC agreement was used to justify the simulation of a sample of
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Figure 2.9: Energy resolution in ICARUS for low-energy electron based on MC studies.
Only the ionization induced by the electron is considered for both reconstructed and truth
information [33].

isolated low-energy electrons to estimate energy resolution. The resulting energy resolution

curves from ICARUS are presented in Figure 2.9, taking the resolution from the width of a

fitted Gaussian function to the distribution of δE = (Eion
meas−Eion

MC)/Eion
MC at specific values

of Eion
MC . Fitting these points to a function of the form f(E) = a/

√

E[MeV] ⊕ b, they

a = (11±1)% and b = (2.5±0.3)%, with the errors on each value arising from statistics [33].

The first term in this formulation (a/
√
E) models the expected contribution due to electronic

noise on signals read out from the wires (from which deposited charge is extracted); the

second term (b) represents the contribution due to inherent reconstruction effects related

to charge hit-finding, hit-integration, and clustering. This equation is commonly used to

characterize the calorimetric resolution in detectors of all kinds.

The MicroBooNE experiment [24] also studied Michel electrons from stopping cosmic

muons. Once again, an energy spectrum was reconstructed and compared to MC in order

to validate the simulation. The energy resolution was then evaluated from MC, though with
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several key differences relative to the ICARUS study which must be noted. For example,

MicroBooNE looked only at the energy of the Michel electron in the muon decay topology

(not isolated electrons as was the case in ICARUS’s MC study), and they used the original

electron’s kinetic energy as the “truth” reference energy for calculations of resolution instead

of only the deposited energy. They also separately considered the energy constructed from

both the direct electron ionization, Eion (similarly to ICARUS) as well the “total” energy

(Ee) by including displaced bremsstrahlung photon-induced charge depositions. They found

a fractional energy resolution of σ/E ∼ 30% for the electron ionization alone, which improved

to σ/E ∼ 20% after the inclusion of radiative photons. Unfortunately, MicroBooNE was

unable to reconstruct a “time-zero” (T0) for these events which is necessary in order to

correct for electron attenuation from impurities during the drift as explained in Section 3.3.

Contributions from cosmic muon contamination further degraded the achieved resolution

since muon tracks and delta-rays (knock-off ionization electrons from the muon track) could

be clustered together within the electron shower by accident. These two caveats, along

with their differences in the definition of energy resolution, make direct comparisons to the

ICARUS result difficult.

A recent study performed by the ArgoNeuT experiment [35, 36] measured energies of

MeV-scale de-excitation photons from Ar and deposits from inelastic scattering of neu-

trons produced in neutrino-Ar interactions [37]. This represents a remarkable milestone

for LArTPC calorimetry, extending the accessible energy range down to ∼ 1 MeV. Success-

fully tagging de-excitation gammas may also help in identifying CC-νe interactions from SN

and solar ν. Since the focus of this thesis is on low-energy electrons, these results from

ArgoNeuT will not be discussed in detail.

2.6 The case for scintillation light

Absent from our discussion thus far has been the role scintillation light plays in LArTPC

reconstruction. Since it propagates several orders of magnitude faster than the drifted elec-
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trons, its detection provides a useful reference point in time (T0) corresponding to the event.

This information is essential for properly measuring the absolute spatial coordinates of charge

hits along the drift direction (x̂ as is common convention), which is necessary for estimat-

ing and correcting for attenuation of electrons by residual impurities along their drift path.

Good timing resolution also aids in background mitigation for accelerator-based oscillation

experiments through the requirement that an event be triggered coincidentally with the time

structure of the pulsed beam. Timing information may also improve particle identification

for delayed decay electrons from stopping muons [38].

Both SN and solar ν studies can benefit from a powerful light collection capability. For

example, if optical flashes can be matched spatially with their associated electron from SN

νe interactions, the temporal structure of the SN ν signal can be measured [12]. Light also

offers a way to potentially trigger readout for astrophysical ν interaction events [11, 12].

In the chapters that follow, an additional use for scintillation light is explored: enhanced

calorimetry. First we describe the physics of energy deposition in LAr and how this light

is actually produced (alongside the ionization charge). Then, studies carried out in the

LArIAT testbeam experiment are presented which demonstrate that the energy resolution

for low-energy electrons benefits from the inclusion of scintillation light.

23



3

Charge and Light Production in Liquid Argon

In this section, the physics of energy deposition by charged particles in LAr is reviewed.

Mechanisms of ionization charge and scintillation production are used to motivate calori-

metric techniques in which information about both quantities is combined.

3.1 Energy loss by charged particles in matter

Charged particles lose energy (E) primarily by ionizing surrounding atoms of the medium

within which they traverse. At moderately relativistic energies (0.1 . βγ . 1000) and

materials of intermediate atomic number (Z), a particle’s stopping power – or average energy

loss (dE) per unit length (dx) – is well-described by the Bethe-Bloche equation [39],

〈

−dE
dx

〉

= Kz2
Z

A

1

β2

[
1

2
ln

(
2mec

2β2γ2Tmax

I2

)

− β2 − δ

2

]

, (3.1)

where z is the number of valence electrons of the medium, A is the medium’s atomic mass,

β is the ratio of the particle’s velocity to that of light (v/c), me is the electron mass, γ is the

Lorentz factor (= 1/
√

1 − β2), I is the mean excitation energy of the atoms of the medium,

and Tmax is the maximum kinetic energy that a particle of mass M can impart onto a free

electron in a single collision:

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(3.2)

The term δ corrects for the density effect which manifests at higher momenta, and K =

4πNAr
2
emec

2 where NA is Avogadro’s number and re is the classical electron radius.

The total energy loss for positive muons in copper is shown in Figure 3.1. Only in the

“Bethe-Bloch” region is dE/dx well-modeled by the above relationship; for higher energies,

radiative effects begin to dominate in which emitted photons carry away the particle’s energy,
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Figure 3.1: Stopping power for muons in copper as a function of energy and momentum [39,
40].

and at lower energies the particle’s velocity becomes comparable to those of atomic electrons

and Equation 3.1 loses its applicability. The rate of energy loss directly to ionization, as

opposed to radiative photons, is often termed the electronic stopping power.

Stopping power is characterized by a broad region of minimal energy loss as seen, for

example, in Figure 3.1 at βγ ≈ 3 (or a momentum of approximately 500 MeV/c). The

location of minimal ionization density is dependent on particle mass, typically falling in the

range 3.0 < βγ < 3.5. Most particles relevant to high-energy experimental physics – for

example, cosmic-ray muons – have energies that place them within this valley of low-dE/dx

and are thus termed “minimal ionizing particles” or MIPs.

The electronic energy loss of a moving particle, while on average described by Bethe-

Bloch, is subject to stochastic fluctuations. This results in a probability distribution of

energy loss per interaction that follows a highly-skewed Landau. Figure 3.2 illustrates this

by showing the energy loss distributions for pions traversing a range of different silicon

thicknesses. For this reason, the average energy loss 〈dE/dx〉 tends to be a difficult metric

to measure experimentally, and the most probable value (MPV) is preferred. For a particle
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Figure 3.2: Skewed Landau energy loss probability distribution for pions traversing sili-
con [39].

traversing a material of thickness x, the MPV of the total energy loss, ∆p, is described by

∆p = η
[

ln

(
2mec

2β2γ2

I

)

+ ln
(η

I

)

+ j − β2 − δ(βγ)
]

(3.3)

where η = 1
2K(Z/A)(x/β2). In Figure 3.3, both 〈dE/dx〉 and ∆p/x are plotted as functions

of momentum for several charged particle species traversing a length of 4 mm of LAr.

Table 3.1: Physical properties of liquid argon (LAr).
Variable Description Value

Z Atomic number 18
A Atomic mass 39.948 g/mol
I Mean excitation energy (lone atom) 188 eV [45]

ρ Density (liquid phase) 1.396 g/cm3

Wion Average deposited energy per ionized atom (liquid) 23.6 ± 0.3 eV [41]
Wph Mean ionization/excitation energy (liquid) 19.5 ± 1.0 eV [46, 47]
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Figure 3.3: The mean electronic stopping power 〈dE/dx〉 and the most probable electronic
stopping power ∆p/dx (or MPV) for several particle types traversing a 4-mm length of LAr.

3.2 Ionization, scintillation, and recombination

The diagram in Figure 3.4 illustrates how energy lost through electronic means by a single

particle interaction in LAr is ultimately divided between free electrons and scintillation

photons, often referred to here as Q and L, respectively. In the following subsections we

walk through the physics needed in understanding each step in this chain.

3.2.1 Ionization and excitation of Ar

Energy deposited in LAr (∆E) is first distributed between some number of excited (Nex)

and ionized (Ni) Ar atoms according to an excitation ratio, α = Nex/Ni. The excitation

ratio for electrons in LAr is calculated from measurements to be α = 0.21 [41–43]. This ratio

is observed to be higher for more heavily-ionizing particles like alphas.

Through excitation mechanisms and secondary interactions with surrounding bulk Ar

atoms, excited argon dimers or excimers, Ar∗2, are produced. These short-lived excimers
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Figure 3.4: Schematic diagram illustrating the production of observable quantities of charge
(e−) and scintillation (γ) for an energy deposition in liquid argon.

decay to their dissociative ground state by emitting a vacuum ultraviolet (VUV) photon

of λ = 128 nm and energy E = 9.69 eV [44]. The excited electron in Ar∗2 exists in

either the singlet state (1Σ+
u ) or the triplet state (3Σ+

u ) configuration, with decay lifetimes

of τs = 6 ± 2 ns [48] and τt = 1300 ± 60 ns, respectively [44]. The ratio of singlet to

triplet excimers formed, Is/It, is believed to be dependent on the local excitation density

along a particle track, enabling particle identification based on the observed ratios of “fast”

singlet-decay and “slow” (or “late”) triplet-decay components of the light [49]. For electrons,

this ratio has most recently been measured as Is/It = 0.51 ± 0.05 [44, 50]. Several

ideas have been proposed to explain the dependence of Is/It on ionization density. One

possibility [48] is thermalized free electrons undergoing superelastic collisions with singlet-

state dimers, changing them to triplet states. This process would then be proportional to the

recombination time. Recombination takes place more rapidly for heavily-ionizing particles,

leaving less time for this collisional process to take place (resulting in a higher Is/It).

The photon-emitting argon excimers Ar∗2 are produced through two channels. Schemat-
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ically, the excitation channel proceeds as follows:

∆E + Ar →Ar∗

Ar∗ + Ar + Ar → Ar∗2 + Ar

Ar∗2 −→ 2Ar + γ

In the ionization channel on the other hand, a freed electron (e−) recombines with a molecu-

lar argon ion (Ar+2 ) to produce a doubly-excited Ar∗∗ which then undergoes a non-radiative

transition producing an exciton, Ar∗. This leads to the formation of Ar∗2 through interactions

with bulk ground-state Ar [47]:

∆E + Ar → Ar+ + e−

Ar+ + Ar → Ar+2

Ar+2 + e− → Ar∗ + Ar + heat

Ar ∗ +Ar + Ar → Ar∗2 + Ar

Ar∗2 −→ 2Ar + γ

3.2.2 Electron-ion recombination

The rate of the e−-Ar+2 recombination process shown in the ionization channel above is

often characterized using the recombination survival probability or recombination factor, R,

which is the number of escaping electrons (Ne) divided by the original number of electron-ion

pairs produced. The recombination factor is dependent in part on the external electric field

strength (E ). For stronger electric fields, more liberated electrons are drifted away from

the deposition region before they can recombine, contributing to the total deposited charge

referred to as Q. On the other hand, the recombination probability decreases at lower E ,

resulting in less charge and more scintillation light L. The ionization density also plays a
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role in this process since a smaller average separation distance between electrons and ions in

the ionization cloud results in more efficient recombination.

Following from the physical intuition outlined above, functional forms predicting the rate

of recombination have been derived phenomenologically. The Onsager germinate theory of

recombination [51] assumes that a freed electron recombines with its parent ion under the in-

fluence of the mutual Coulomb attraction between them. Alternatively, the columnar model

of recombination proposed by Jaffe [52] assumes electrons instead reattach primarily to other

argon ions nearby. The Jaffe model thus predicts the local density of ionization will be posi-

tively correlated with the rate of recombination. Simulations [53] of electron thermalization

in liquid argon estimate the probability of germinate recombination at ≈10−3 for typical

charge deposition densities. Therefore, the Jaffe model is more relevant in understanding

recombination in liquid argon since electrons are far more likely to recombine with other

ions in their vicinity. Jaffe theory assumes electrons and ions take on a Gaussian spatial

distribution around the particle trajectory, and that this distribution (as well as the charge

mobility factors, µ) are the same for both. Following these assumptions, the fraction of

electrons and ions that survive the recombination process is given by an equation which is

now referred to as Birks law [54]:

RJ =

[

1 +
αN0

8πD

√
π

z′
S(z′)

]−1

where z′ =

(
bµE sinφ√

2D

)2

(3.4)

where α is the coefficient of recombination, N0 is the number of ion-electron pairs per unit

length, D is the diffusion coefficient, E is the external electric field, and b = r0
√

4/π where

r0 is the average ion-electron separation. The angle of the particle’s trajectory relative to

the electric field is given by φ. The function S(z′), which accounts for the time-dependent

overlap of electron and ion distributions, is given by

S(z′) =
1√
π

∫ ∞

0

e−s
√

s(1 + s/z′)
ds (3.5)
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For typical particle trajectories1 in LArTPCs, S(z′) ∼ 1, allowing Equation 3.4 to be re-

written in a simpler form:

RJ =

[

1 + kc
(dE/dx)

E sinφ

]−1

(3.6)

where all the prefactors have been absorbed into a liquid argon-specific constant, kc.

Further simplifications to this model are made by Thomas and Imel [57]. They ignore

transverse electron diffusion, which is negligible (on the order of millimeters per meter of

drift). They also neglect the mobility of positive ions since the ion drift velocity is at least

several orders of magnitude smaller than the electron drift velocity. By dropping these terms

and imposing “Box model” boundary conditions on the Jaffe equation, they find

RBox =
1

ξ
ln(α + ξ), ξ =

αN0

4a2µE
(3.7)

The variable ξ incorporates the charge density in a box of size a and volume V = 4a2.

One can recast ξ in terms of linear charge density,

ξ = β(dE/dx), (3.8)

where β is a parameter that would be extracted from fits to data.

Several LArTPC experiments used data to parameterize the recombination survival prob-

ability. The ICARUS Experiment [23] used a sample of minimally-ionizing stopping cosmic

muons to determine a parameterization of the Birks functional dependence on stopping power

1. The ArgoNeuT analysis used proton and deuterons over an angular range of φ = 20◦-80◦ in an
electric field of strength 481 V/cm. They estimated the diffusion and mobility of electrons based on electron
thermalization, D/µ ≈ Ethermal ≈ 0.01 eV, and used r0 = 2500 nm. For this range of conditions, S(z′) was
found to vary by less than 1%. [58]
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dE/dx in LAr [55]:

R(dE/dx) =
A

1 + k/(E × dE/dx× ρ)
(3.9)

A = 0.800 ± 0.003 (3.10)

k = 0.0486 ± 0.0006 (kV/cm)(g/cm2)/MeV (3.11)

It is interesting to note that the ICARUS parameterization of Birks Law does not tend toward

R → 0 with E → 0 as one would expect based on physical arguments. This implies that

even at zero-field, some fraction of freed electrons are expected to escape the recombination

process as they diffuse outward and into regions of considerably lower charge density. This

idea is supported by experimental results [56].

The ArgoNeuT Experiment [35] parameterized recombination using samples of more

heavily-ionizing particles, protons and deuterons. ArgoNeuT also engineered a modified

form of the Box model from Equation 3.7 which avoided mathematical pitfalls that manifest

for spuriously-high values of dE/dx [58]. This “Modified Box model” recombination is

represented as

R(dE/dx) =
ln
[
α + β′(dE/dx)/(ρE )

]

β′(dE/dx)/(ρE )
(3.12)

α = 0.93 ± 0.02 (3.13)

β′ = 0.212 ± 0.002 (kV/cm)(g/cm2)/MeV (3.14)

Both the Birks Model (Equation 3.9) and Modified Box Model (Equation 3.12 are plotted

as functions of dE/dx for LArIAT’s electric field value of E = 484 V/cm in Figure 3.5.

3.2.3 Production of charge and light

For heavily-ionizing nuclear recoils, various effects [59–62] are believed to lead to energy

also being dissipated into atomic motion (heat) through the non-radiative destruction of
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Figure 3.5: Recombination in LArIAT according to the Modified Box Model (using Ar-
goNeuT parameterization [58]) and the Birks Model (using ICARUS parameterization [55]).
The downturn in the Modified Box curve at low-dE/dx is a mathematical artifact of the
equation and does not describe actual recombination physics.
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some fraction of Ar∗2 as described by Lindhard’s theory, bi-excitonic quenching of excitons,

and Penning quenching of excimers. For MeV-scale electrons however, we may neglect

these effects and assume all the deposited energy goes into observable charge and light

and represent them mathematically as

Q = Ne = NiR (3.15)

L = Nγ = Nex +Ni(1 −R), (3.16)

Charge and light are therefore seen to be anticorrelated for electrons, with their sum

directly proportional to the total energy deposited,

Q+ L = Nex +Ni =
∆E

Wph
(3.17)

where Wph = 19.5 ± 1.0 eV [46, 47] is the average energy required to produce an ion or

exciton. The quantity Wph relates to the commonly used ionization work function, Wion =

23.6 ± 0.3 eV [41], through the excitation ratio, Wion = (1 + α) Wph.

3.3 Quenching effects from impurities in LArTPCs

The processes described so far govern the direct production of ionization electrons and pho-

tons at the site of the particle interaction. Here we describe how impurities in the argon

can further reduce these quantities prior to their collection in a LArTPC, a process known

as quenching. Such impurities (O2, N2, H2O, and CO+CO2) are commonly found in trace

amounts in commercially-available LAr [63]. While multi-stage filtering processes using oxy-

gen reactants and molecular sieves are fairly effective at removing O2, H2O and CO+CO2

in LAr (down to < 100 parts-per-trillion, or ppt), a small residual fraction of these contam-

inants can remain, especially if the filter malfunctions or there is a leak or outgassing into

the purified LAr volume in which the TPC resides.
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3.3.1 Charge attenuation during drift

In a LArTPC, electrons freed by ionization which do not recombine with Ar+2 will be directed

along the electric field toward the readout wires. However, electrons will attach to electro-

negative contaminants, especially oxygen, along the way (e− + O2 → O−
2 ). If it is assumed

that the concentration of electrons is much smaller than that of the oxygen (Ce ≪ CO2),

and that the concentration of contaminants is uniform throughout the volume, then this

attachment process will cause the free electron concentration to decrease over time based on

a first-order rate law, with the rate of decrease proportional to the electron concentration:

d

dt
[Ce] = −keCO2Ce −→ Ce(t) = C0

e e
−t/τe (3.18)

where C0
e is the electron concentration at some reference time t = 0, τe is the electron lifetime

and ke = 1/τe is the corresponding rate constant [63]. The value of ke depends on the electric

field strength with ke = 5.5 × 1010 lt mol−1 s−1 [64], though typically the value of τe will

be measured directly from data from the observed attenuation of charge deposition density

(dQ/dx) over drift distance. The calibration method to extract τe from data is described in

Chapter 6.

3.3.2 Light quenching

Non-radiative destruction of photon-producing Ar excimers, Ar∗2, can occur through two-

body collisions with all kinds of residual impurities. The impurity contributing most promi-

nently to this process is N2 (Ar∗2 + N2 → 2Ar + N2). Similarly as before with charge

attenuation, the rate of change in excimer concentration (C∗) is thus proportional to the

concentration of contaminants (CN2). However, the excimer concentration now has its own

time dependence due to the singlet- and triplet-state de-excitations:

C∗(t) = Ct + Ct = C0
s e

−t/τs + C0
t e

−t/τt (3.19)
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Figure 3.6: Average optical signals for different levels of N2 contamination [65].

where CS and CT are the singlet- and triplet-state excimer concentrations, respectively. The

impurity quenching process therefore competes with the radiative de-excitation that produces

light (Ar∗2 → 2Ar + γ). Following the same procedure as with the charge attenuation, we

arrive at modified time-dependent functions for CS and CT in the presence of LAr impurities:

Cs(t) = C0
s e

−t(τ−1
s +τ−1

q ) (3.20)

Ct(t) = C0
t e

−t(τ−1
t +τ−1

q ) (3.21)

where τq is the characteristic quenching lifetime (analogous to the electron lifetime τe from

before). We see that excimer population j now has an “effective” quenched lifetime [63, 65],

τ ′j =

(
1

τj
+

1

τq

)−1

. (3.22)

The net result of this scintillation quenching is a reduction in the observed lifetimes of

the prompt (singlet) and late (triplet) components of the light as well as an overall reduction

of factor τ ′/τ in the amount of light that gets produced by each component [65]. In typical
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experimental conditions where LAr has undergone proper filtering, τq ≫ τs and very minimal

change is seen in the prompt singlet component (τ ′s ≈ τs = 6 ns). However, the triplet

component tends to be more vulnerable to this quenching due to its much longer decay time

of τs = 1.3 µs. This is demonstrated in Figure 3.6 where average scintillation waveforms are

shown for varying levels of N2 contamination in LAr [65], with late-light lifetime dramatically

decreasing as contamination levels rise from 0 ppm to 40 ppm.

Correcting for light quenching in data thus relies on the knowledge of τq, which can

be estimated based on exponential fits to average optical waveforms. A linear relationship

between τq and the late-light lifetime measured in averaged optical waveforms, derived from

a Monte Carlo study, is presented in Appendix A.

3.4 Implications for energy reconstruction

Before Q or L can be used in energy reconstruction, the quenching described previously must

be corrected. For Q, the correction is straight-forward: each individual charge deposit q is

scaled up based on its measured drift time and the known electron lifetime, q × et/τe . For

L, the correction is not as simple due to the differing levels of quenching in the prompt and

late light. These quenching corrections will be presented in Chapter 8.

Light presents additional complications as well. First, determining the amount of fast-

and slow-component light is not straightforward since the time distribution of detected light is

additionally convoluted with physical propagation time and the re-emission fluorescence from

the wavelength shifter tetraphenyl-butadiene (TPB), which has components with lifetimes

ranging from ≈ 5 ns to 3.5 µs [67]. Secondly, unlike the electrons which drift directly to the

wires at constant velocity, VUV photons emanate isotropically. Typically only a very small

fraction of photons are ever detected. Therefore, one must know the fraction of detected

photons, fvis, which requires knowledge of the photon visibility throughout the detector

(from Monte Carlo) as well as a sufficient number of reconstructed 3D space points. From

there, it is possible to reconstruct the light produced in the event, L = S × f−1
vis , where S is
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the (quenching-corrected) amount of detected light.

For track-like topologies that can be spatially reconstructed, the linear density of energy

deposition, dE/dx, can be calculated for points along the track and summed to determine

the total energy deposited by the particle. However, for more complicated topologies like

EM showers which may include many short charge depositions that can’t be fully tracked in

reconstruction, the dE/dx cannot be determined for all depositions, and an average recom-

bination 〈R〉 must be assumed:

E = (Q× 〈R〉−1) ×Wion (3.23)

Combining Eqs. (3.15) and (3.17), the deposited energy can be more holistically determined

by exploiting the complementarity of Q and L for EM showers, foregoing the need to correct

for an assumed recombination:

E = (Nex +Ni) ×Wph = (Q+ L) ×Wph (3.24)

This recombination-agnostic method is particularly useful for shower-like topologies which,

due to the stochasticity of bremsstrahlung radiation and normal Poisson fluctuations in

energy deposition, are likely to include charge deposited over a wide variety of dE/dx.

The physics of energy dissipation in LAr presented here has motivated the use of scintil-

lation light in energy reconstruction. We now intend to use low-energy electrons in LArTPC

data to demonstrate Equation 3.24 in action! This sample will be provided by the LArIAT

testbeam experiment, which is introduced in the next chapter.
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4

The LArIAT Testbeam Experiment

The LArIAT (Liquid Argon In A Testbeam) experiment [68, 69] ran at Fermilab’s Test Beam

Facility [70] from 2015-2017. Its primary purpose was for research and development (R&D)

studies related to calibration of the LArTPC technology more generally, though it is also

delivering several physics results relevant to the field of neutrino research using liquid argon

detectors.

LArIAT’s beamline was assembled and commissioned in 2014. Several data-taking cam-

paigns were undertaken throughout LArIAT’s lifetime, with the first, termed Run I, begin-

ning in April 2015 and ending in July prior to Fermilab’s summer beam shutdown. Run II

began in February 2016 and lasted until July. Several important upgrades were made to

the TPC readout electronics prior to Run II which resulted in better signal-to-noise (S/N)

on the wires. Modifications were also made to the biasing of the light collection system.

These two changes resulted in improved data quality compared to Run I. LArIAT’s second

major run period was bifurcated into two sub-periods based on the configuration of the light

collection system. In Run IIA, only one of the two PMTs was operational; a repair was made

prior to Run IIB, after which both PMTs were used. This is described in more detail later.

For Run III (2017), wire planes with different wire spacings were tested. However, the data

presented in this thesis portends only to Runs I-II, so Run III will not be discussed in detail.

We now describe the detector subsystems relevant to this analysis as well as the Michel

electron hardware trigger using scintillation light from stopping cosmic muons.

4.1 Motivation for LArIAT: physics and R&D goals

With interest in liquid argon surging among neutrino physicists, and several LArTPC-based

neutrino experiments planned or already running, a dedicated calibration of this emerging

technology is invaluable. LArIAT fills this niche through studies of particle response calibra-
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tion, technical R&D, and several physics topics relevant to current and future liquid argon

detectors [69]. Such efforts will provide input to Fermilab’s LAr-based neutrino program.

The primary research goals of LArIAT are outlined below:

• Electron/photon shower separation. Charged-current (CC) νe interactions are

identified by the appearance of an electron EM shower emanating directly from an

interaction vertex. Neutral-current (NC) events can produce neutral pions (π0) which

decay to two photons, which will (invisibly) travel some distance before pair-producing

to form an EM shower. Distinguishing these two events is critical to the success of

the SBN Program at Fermilab which is searching for νe appearance in a νµ beam to

address the low-energy νe excess observed in LSND and MiniBooNE. LArTPCs are

able to accomplish this thanks to their calorimetric nature and fine spatial granularity.

Photon showers are tagged by identifying two key features: (1) a spatial displacement

between the interaction vertex and the start of the EM shower; and (2) a linear energy

deposition density dE/dx corresponding to two minimally-ionizing particles (MIPs)

at the start of the shower. ArgoNeuT has demonstrated this dE/dx separation on a

small sample of electrons and photons from νe data events [36]. LArIAT will be able

to carry out a systematic measure of the efficiency of this method using a large sample

of electron showers produced in its tertiary beamline, as well as a sample of photons

through π0 decays and bremsstrahlung radiation from electrons.

• Pion-argon interactions. A major source of systematic uncertainty in neutrino

interactions is related to the largely-unknown dynamics of pions interacting with con-

stituents of the Ar nucleus. LArIAT will measure various π-Ar interaction cross section

for the first time, helping to validate nuclear models implemented in simulations. As

part of this effort, LArIAT will also facilitate the development of algorithms for iden-

tifying the various pion interaction modes on Ar.

• Kaon-argon interactions. The efficient identification of charged kaons (K±) is im-
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portant for proton decay searches which will look for the decay channel p → νK+,

predicted by various supersymmetry (SUSY) and grand unified theories (GUTs). LAr-

IAT will use the small fraction of kaons present in its beamline to measure K±-Ar

cross sections and evaluate their reconstruction and identification efficiency.

• Proton and antiproton interactions in LAr. LArIAT will collect a large sample

of protons (p) from its positively-tuned tertiary beamline, and a much smaller sample

of antiprotons (p̄) when the beam is tuned to select negatively-charged particles. A

measurement of the p-Ar cross section will be possible, as well as the observation of

p̄-Ar annihilation, the results from which will help in constraining simulated nuclear

models which will be used in searches for neutron-antineutron oscillation in DUNE.

• Scintillation light. As discussed in Chapter 3, much of the energy deposited by

particles in LAr goes into generating scintillation photons. LArIAT’s powerful light

collection system, to be described momentarily, allows for studies in which this light

is used to enhance calorimetry or in particle identification techniques (similar to those

used in dark matter searches) in which the prompt light ratio is used to separate

particles based on their dE/dx [49].

4.2 Beamline

The charged particles which LArIAT observes originate from the Fermilab Main Injector

(MI). Protons are accelerated to 120 GeV in the MI and then directed toward the Fermilab

Test Beam Facility (FTBF) [70] where they impinge upon a target to produce a “secondary

beam” composed mostly of high-energy pions and protons. The energy of this secondary

beam can be tuned to anywhere between 8 GeV and 80 GeV.

The secondary beam is used to create what is referred to as LArIAT’s “tertiary beam”

in the Meson Center enclosure at FTBF. Since the analysis presented in this thesis does not

use any beamline information, we will only discuss the components of the tertiary beam in
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Figure 4.1: A schematic overhead view of LArIAT’s beamline and TPC in the Meson Center
at the Fermilab Test Beam Facility.

limited detail. The high-energy secondary beam is first impinged onto a copper (Cu) target

embedded in a steel collimator as illustrated on the left in the overhead view of the tertiary

beamline shown in Figure 4.1. The collimator has a narrow opening at 13◦ off-axis, allowing

for outgoing particles emanating from the pion-Cu interactions to continue onward along

the beamline. Particle trajectories are tracked by four wire chambers as they traverse the

beamline and are bent by about 10◦ in the dipole magnets. Momentum (P ) can then be

calculated from this information, which, together with the particle time-of-flight (TOF), is

used to determine particle mass and select particles for analysis [69]. Aerogel Cherenkov

detectors and a muon range stack have the potential to help in further distinguishing π from

µ (which are close enough in mass to be indistinguishable in the mass selection), though

data from these detectors have yet to be used in ongoing analyses.

4.3 Cryogenic system

The LArIAT cryostat, shown on the left in Figure 4.2, is composed of a cylindrical inner

cryostat (76.2-cm in diameter and 130 cm in length) filled with purified LAr in which sits

the time projection chamber (TPC). Surrounding this is a region of vacuum and layered
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Figure 4.2: The fully-sealed LArIAT cryostat (left) and the TPC sitting inside the open
inner cryostat (right).

aluminized mylar sheets to provide insulation for the inner cryostat. A wide neck protrudes

from the top to allow for signal and high-voltage (HV) cables, and a side-flange with several

high-voltage feedthroughs provide signal and HV to the region behind the wireplanes where

the light collection system is mounted.

A commercial dewar of LAr sits outside the Meson Center enclosure. The LAr passes from

the dewar to a purification system [71] consisting of several stages which, together, remove

primarily water and oxygen (O2) as well as small amounts of nitrogen (N2). Electrons in

LAr easily attach to water and O2 along their drift, so maintaining good LAr purity (< 100

ppt) of these two contaminants is critical for ensuring electron drift lifetimes are long enough

not to adversely affect signal integrity (τe & 1 ms).

Filtered LAr is then piped into the inner cryostat, filling it up from the bottom. Argon

level, temperature, and pressure are monitored using several sensors positioned at varying

heights in the cryostat. Over time, LAr boils off and must be refilled several times per day

during data-taking in order to maintain a level such that the TPC readout electronics are

continually submerged [69].
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Figure 4.3: Schematic representation of the three drift regions in the LArIAT TPC.

4.4 Time projection chamber

The LArIAT TPC is a refurbished version of the TPC from ArgoNeuT which ran in the NuMI

ν beamline from 2009-2010 [35, 36]. In accordance with the conventional TPC coordinate

system for LArTPCs, the (secondary) beam axis determines the Z direction while Y describes

the vertical dimension and X describes the “drift” coordinate parallel to the applied electric

field. LArIAT’s 170-liter liquid argon active volume has dimensions of 47.3 cm (x ) × 40 cm

(y) × 90 cm (z ).

LArIAT’s TPC, shown on the right in Figure 4.2, is equipped with a total of three wire

planes: a non-instrumented 225-wire shield plane, and 240-wire induction and collection

readout planes. All planes have a wire pitch (or separation) of 4 mm. Wires on the induction

and collection planes are oriented at ±30◦ relative to the vertical direction. High voltages are

applied to the cathode plane (≈ −23.2 kV), shield plane (-298 V), induction plane (-18.5 V)

and collection plane (338 V) to induce a uniform electric field of strength E = 484 V/cm

parallel to the X-direction. This field strength is also measured in data from observed electron

drift velocities for anode-cathode-piercing muon tracks [69]. The relative biasing between

planes is set to enable electron transparency conditions on the shield and induction planes

such that the drift electrons pass by these two planes and induce signals before being collected

on the final (positively-biased) plane. Figure 4.3 illustrates the three distinct regions in the

TPC across which electrons drift before finally being absorbed onto the collection plane.
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After their assembly and prior to their installation in the TPC, the wire planes were

tested using simple electrical continuity tests and through measurements of the RC time

constant following the injection of a 20 Hz square wave.

4.5 Photon detection system

We now describe LArIAT’s system for collecting scintillation light, a critical ingredient to

the analysis which will follow in subsequent chapters.

LArIAT is unique among existing LArTPCs in how it implements wavelength-shifting.

As discussed in Chapter 3, the scintillation photons from the decay of Ar∗2 are produced in the

VUV regime (λ = 128 nm). To match the spectral sensitivity of most photodetectors, which

respond primarily to visible light, light collection systems in LAr typically rely on tetraphenyl

butadiene (TPB) to down-convert the VUV scintillation photons into the blue-visible regime

(λ ≈ 430 nm). In LArIAT the active target volume is surrounded by wavelength-shifting

material, a technique adapted from many scintillation-based dark matter experiments. The

four inner walls of the TPC’s field cage are lined with dielectric foils made of a polymeric

layer of highly specular reflectivity. These foils have been evaporatively coated with a layer of

the wavelength-shifting TPB. VUV photons produced by ionizing particles are wavelength-

shifted at these foils and the re-emitted visible photons are subsequently reflected back into

the active volume where they have a chance of being detected. Compared to more traditional

methods where TPB is coated or suspended in front of the PMTs’ windows – for example, as

is done in MicroBooNE [24] – LArIAT’s use of reflector foils increases the average light yield

by nearly a factor of two and improves light yield uniformity throughout the active volume.

Each visible wavelength-shifted photon propagates through the LAr while undergoing

much less scattering compared to the VUV light. A photon may continue reflecting off

of the other foils until it is eventually detected by one of two cryogenic PMTs, a 76-mm

Hamamatsu (HMM) and a 51-mm Electron Tubes Limited (ETL). Each PMT is suspended

behind the wire planes within a PEEK support structure that screws into a side access
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Figure 4.4: A view of the TPB-coated foils lining the field cage walls.

Figure 4.5: A cartoon schematic illustration of VUV light being wavelength-shifting along
the TPB-coated reflecting foils.
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Figure 4.6: The light collection system mounted to the inner flange of the cryostat’s side
port prior to installation.

flange as see in Figure 4.6. The PMTs’ windows are held parallel to the wire planes with

about 5 cm of clearance. Both PMTs were designed for operation in cryogenic temperature,

and were tested [73] and used successfully by the WArP Collaboration [66] in Gran Sasso,

Italy. Their operating voltages in LAr range from 1.1 kV to 1.5 kV, and they draw a

current of about 100 µA each. These devices emit low levels of radioactivity and have high

photoelectron conversion efficiencies – about 29.5% for the Hamamatsu and 17.5% for the

ETL when averaged over the visible TPB re-emission spectrum. The collection efficiency, or

the probability of a photoelectron successfully progressing through the dynode chain, is 90-

95% for the Hamamatsu and 75-80% for the ETL [73]. Schematic diagrams for both PMTs’

voltage dividers are presented in Figures 4.7-4.8, including two slightly different designs for

the Hamamatsu that were used between the run periods [74].

Aside from the PMTs, several silicon photomultiplier (SiPM) arrays were incorporated

into LArIAT’s light collection system as well. These boards are shown in Figures 4.9 and 4.11.

Custom printed circuit boards (PCBs) displayed in Figures 4.10 and 4.12 were designed to

amplify and read out the signals from the SiPMs, each of which were mounted to their

board via a solder-reflow method. The PCBs include an on-board inverting transimpedance

amplifier circuit which uses an OPA656 op-amp. There is a rising interest in using SiPMs for
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Figure 4.7: Voltage divider for the 2”-diameter ETL D757-KFL PMT.

Figure 4.8: Voltage divider for the 3”-diameter Hamamatsu R-11065.
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light collection in LArTPCs for neutrino physics in place of conventional PMTs due to their

lower operating voltage (≈ 25V), smaller profile, and insensitivity to external magnetic fields.

LArIAT’s inclusion of these devices served as a “proof-of-principle” test that such on-board

amplification circuits could be used to read out SiPMs in cryogenic temperature. However,

given their small active areas (6×6 mm2 and 12×12 mm2) the SiPM boards contribute

negligibly to the total light yield. Therefore, data from these SiPMs were not used in the

analysis presented in this thesis.

There were several important differences in the light system between LArIAT’s run pe-

riods which must be noted:

• In Run I, both PMTs were configured for negative bias with the DC-coupled collec-

tion anode held at ground and the photocathode at high voltage (HV). In Run II, to

reduce noise and interference induced on the wire planes due to the proximity to the

charged PMT photocathodes, the PMT voltage dividers were modified for operation

in positive bias mode; in this configuration, the photocathode was grounded and the

anode equipped for AC-coupled readout.

• For Run I and much of Run II, only the ETL PMT was powered due to a malfunction

in the Hamamatsu voltage divider. Midway through Run II, the Hamamatsu was

repaired. The Run II dataset used in this analysis had both PMTs fully functional,

and will be referred to as Run IIB to distinguish it from the first part of the Run II

data-taking period where only the ETL PMT was operational.

• Prior to the start of Runs IIA and IIB, a translucent film of a TPB/polystyrene so-

lution1 was added to the window of the ETL PMT (see Figure 4.13). This TPB film

allowed some of the VUV scintillation light from Ar to down-convert directly at the

face of the PMT instead of at the coated reflector foils. The decision to coat the ETL

1. The TPB coating was made by dipping the PMT’s window twice in a solution of 100 mL toluene, 2 g
polystyrene, and 800 mg (600 mg) of TPB powder for Run IIA (IIB).
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Figure 4.9: Custom SiPM readout board for the 6×6 mm2 SensL MicroFB-60035.

Figure 4.10: Schematic board diagram for the SensL MicroFB-60035 chip with an on-board
inverting transimpedance amplifier circuit using an OPA656 op-amp.
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Figure 4.11: Custom SiPM readout board for the 12×12 mm2 Hamamatsu S11828-3344M
MPPC array.

Figure 4.12: Schematic board diagram for Hamamatsu S11828-3344M MPPC array with an
on-board inverting transimpedance amplifier circuit using an OPA656 op-amp.
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Figure 4.13: The ETL PMT illuminated under a UV lamp after application of TPB film.
Visible re-emission from TPB induced by impinging UV radiation causes it to glow.

in TPB was motivated by potential scintillation timing studies which it enabled, and

was not directly related to the Michel electron analysis described in this thesis.

4.6 Data acquisition

Readout of the TPC and photodetector signals (along with the beamline detectors, which are

not relevant to this thesis) is triggered using the CAEN V1495, a configurable coincidence

module capable of handling 16 logic inputs. User defined patterns are set and the inputs

(sampled at 100 MHz) are checked for any matches to these patterns. If the inputs match a

pattern for two consecutive samples, a readout request is generated.

Ionization drifted to the wires produces relatively small electrical signals which must be

amplified. All 480 wire channels are read out through cold amplifier motherboards host-

ing ASICS (LArASICS) [76] which are mounted along the outer frame of the wire planes

submerged in LAr. Signals are then routed through warm receiver/driver cards and across

∼ 10 m cables to CAEN V1740 digitizers where they are sampled every 128 ns with 12-bit

resolution during readout [69]. A 3072-sample waveform is saved per wire totaling 393 µs

(the total drift time for an event is 320 µs). Typical analog signals from MIPs are roughly

90 mV in amplitude which corresponds to about 180 ADC after digitization.
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Figure 4.14: The Meson Center beam supercycle. Cosmic triggers are active in the 24-second
COSMICON window following each beam spill.

Signals from the photodetectors are first routed to a linear fan-in/fan-out NIM module

where analog copies of the signals are made. One copy of each PMT signal is sent to a CAEN

V1751 digitizer and sampled every 1 ns (1 GHz). Other copies of the signals are used in

light-based trigger logic described in Section 4.7 to follow. Optical waveforms 28672 samples

in length (28.7 µs) are saved per channel for each triggered event.

LArIAT receives 4.2 seconds of MI-extracted beam once every 60.5 seconds as part of

Fermilab’s accelerator complex “super cycle” as shown in Figure 4.14. Following this period

of beam, LArIAT triggers on cosmic muon events for a period of about 24 seconds. At the

time of LArIAT’s conception, this cosmic readout window was intended to include only events

triggered by a pair of scintillator paddles on either side of the TPC within the enclosure which

are arranged to select only muons that cross the long diagonal of the TPC. Such events are

useful in measuring the electron attenuation lifetime for calibration purposes since they span

the full drift length and are assumed to have a MIP-like energy deposition density through

their path (see Chapter 6). However, it was soon realized at the start of Run I that additional

triggers could be implemented using the optical signals. Several scintillation-based trigger

patterns were developed and tested over LArIAT’s data-taking periods, including one to
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select stopping-and-decaying cosmic muons as described in the next section.

4.7 Light-based Michel electron trigger

A hardware-level trigger was set up to collect events where a cosmic muon stops inside the

TPC and decays to a Michel electron after some time delay. This trigger is represented

schematically in Figure 4.15. Copies of both PMT signals are first amplified x10 in a NIM

amplifier module and then discriminated at thresholds ranging 80-140 mV, which corresponds

to discrimination at 8-14 mV on the original unamplified signals. This amplification is neces-

sary in order to extend the trigger sensitivity to lower signal voltages since the discriminator

module has a minimum threshold of ≈50 mV. A coincidence of these discriminated signals

produces the logic signal LARSCINT. The LARSCINT signal opens a 7-µs-wide gate and,

by nature of the gate generator module, imposes a “dead time” during which subsequent

LARSCINT signals will not open more gates. A second LARSCINT produced in coincidence

with this gate produces the MICHEL signal. In order to prevent accidental mis-fires in which

a pulse coincides with itself, the coincidence gate is delayed by 250-300 ns. An example os-

cilloscope screenshot of this trigger in action is shown in Figure 4.16. Starting in Run II,

unamplified copies of the PMT signals were discriminated at 180 mV to use as a veto on

events that might saturate the full 200 mV dynamic range of the CAEN 1751 digitizer.

Much time was spent experimenting and optimizing this trigger by viewing events in

an oscilloscope in the Meson Center enclosure. An example oscilloscope readout trace is

shown in Figure 4.16. The configuration was tweaked a number of times over the course of

LArIAT’s run time to test different schemes. The specific configurations used to collect the

Michel electron samples used in our analysis is described in Chapter 8.

Michel electron candidate events were collected at a rate of 1-3 Hz depending on the run

period. These events were a mix of true Michel events and accidental background events that

faked the delayed double-pulse. An event display of a Michel electron candidate is displayed

in Figure 4.17.
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Figure 4.15: Schematic diagram of the logic used to make two of the light-based trigger
signals in LArIAT, LARSCINT and MICHEL [74]

.

Figure 4.16: An oscilloscope screen capture demonstrating the trigger for a cosmic Michel
decay candidate captured using the light-based trigger.
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Figure 4.17: Raw data event of a stopping muon with its decay electron from the Michel
electron light-based trigger. Vertical columns of pixels represents the raw signal collected on
wires. The color scale indicates wire signal amplitude at each time-tick.
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5

Reconstruction of Michel Electrons

This chapter covers the reconstruction of the sample of low-energy electrons obtained from

the light-based Michel electron trigger. First the physics of muon decay are reviewed and

the specific data samples are introduced for both Run I and Run IIB. Then the steps in-

volved in reconstructing physical quantities from the raw data are outlined using both the

charge and optical data. Finally, in order to validate the sample, the muon decay time

spectrum is reconstructed and used to extract a measurement of the negative muon capture

lifetime/probability as well as the cosmic muon charge ratio.

5.1 Overview of muon decay and capture

Muons undergo β-decay with a well-measured vacuum lifetime of τfree = 2.197 µs [79], with

each decay producing either a positron or an electron and two neutrinos:

µ+(−) → e+(−) + νe(µ) + νµ(e) (5.1)

In the rest frame of the muon, the kinematic phase space available to the final products

of this decay give the outgoing e+(−) a distinctive energy spectrum with a sharp cut-off at

Ee = mµ/2 ≈ 53 MeV. Electrons from muons that lose enough energy to come to a stop in

a medium before decaying are referred to as Michel electrons. A measurement of the Michel

energy spectrum is shown in Figure 5.1 [77].

Muons that come to a rest in media behave differently depending on their charge sign. As

a µ− slows down and approaches rest, it becomes bound to a nucleus due to the attractive

Colulomb potential and immediately cascades down to the 1S atomic orbital. Bound µ−

can still undergo decay, though the energy of the emitted electron is smeared slightly from

Doppler shift effects due to the inherent velocity of the µ− in orbit. This effect softens the
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Figure 5.1: Positron energy distribution from decay-at-ret µ+ at the Columbia University
cyclotron at the Nevis laboratories (left) [77]. On the right is the energy spectrum for bound
µ− decaying in-orbit. Data from the TWIST experiment (black points) are compared to
theoretical curves with (solid red line) and without (dotted blue) radiative corrections. The
dashed green line represents the electron spectrum from free µ+ that stop and decay [82].

53 MeV edge in the Michel spectrum [82], and also slightly reduces the rate of decay for

the bound µ−. Given the relatively small Bohr radius of a bound muon in its lowest orbital

state (a ≈ 0.005a0 ≈ 0.0029 angstrom), the muon’s wavefunction partially overlaps with

that of the nucleus. This enables a nuclear capture process to take place, µp → νµn. The

probability of capture competes with that of decay, resulting in an effective µ− lifetime,

τµ− =

(

1

τc
+

Q

τfree

)−1

(5.2)

where τc is the lifetime of the capture process and Q (=0.988 for Ar [80]) is the Huff factor,

a minor corrective term to account for the reduction in decay rate for bound µ− [81].

Theoretical predictions based on the Primakoff formula [80] give a µ−-Ar capture life-

time of τc = 851 ns, which translates to an effective predicted µ− lifetime τµ− = 615 ns.

Measurements by Suzuki and Measday [80] show τc = 833 ± 55 ns (τµ− = 606 ± 29 ns). A

more recent measurement [83] in LAr showed τµ− = 616.9 ± 6.7 ns.
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5.2 The Michel electron data samples

Specific data-taking periods were selected from Run I and Run IIB during which the Michel

trigger was functioning optimally. These are summarized in Table 5.1. Each dataset is

defined by a curated range of runs with additional requirements on PMT voltages and TPC

readout status to ensure good quality data. Care was taken to exclude runs taken during

two specific periods in Run IIB during which the electric field was varied for test runs, and

when the cryostat was drained and for argon filter regeneration.

Since both PMTs were operational in Run IIB, the scintillation logic signal was taken

as the coincidence of both discriminated PMT signals. This allowed the discrimination

threshold for the ELT PMT to be lowered in Run IIB without significantly adding to the

number of noise-induced triggers.

Table 5.1: Summary of the nominal data samples used in this analysis.

Datasets Date Range
Effective

trig. thresholds

Trigger

gate delay
Notes

Run I 06/18/2015 - 06/29/2015 ETL: -16 mV 300 ns
ETL PMT only,

Negative HV mode

Run IIB 06/07/2016 - 06/22/2016
HMM: -14 mV
ETL: -7 mV

250 ns
Positive HV mode,
Overshoot in HMM

5.3 Charge reconstruction

We now describe the stages in the procedure in which raw wire plane signals are used to

reconstruct collections of charge deposits which belong to the decaying Michel electron. First,

wire signals pass through a 1D deconvolution using Fourier transform techniques. Pulses are

then identified and tagged as “hit” objects containing some amount of integrated charge

arriving at some time. Hits are then clustered and information from both planes is used to

form 3D tracks from line-like hit patterns. A custom clustering technique is then carried

out which identifies hits belonging to the Michel electron. These stages are outlined in more

detail below.
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Reconstruction is performed offline using LArSoft [78], a detector-generic suite of algo-

rithms and modules written primarily in C++, tailored for common LArTPC-specific data

processing tasks.

5.3.1 Wire signal deconvolution and filtering

The measured output signal along a wire, y(t), is a convolution of some impulse response

h(t) and the actual (unknown) signal generated by the collected or induced charge x(t),

along with some electronic noise component n(t): y(t) = (x(t) ∗ h(t)) + n(t). The impulse

response itself is a convolution of (a) the electronics response inherent to the readout elec-

tronics, shown in Figure 5.2, and (b) the expected plane-dependent field response as charge

approaches and either passes by or collects on the wires. Signals on the collection plane

will appear unipolar, whereas signals on the induction plane will have a bipolar shape; the

field response functions characterize this effect. Figure 5.3 illustrates these field response

functions.

A series of signal deconvolution algorithms are applied to the waveforms from both planes

to reverse the detector effects and restore the true distribution of arriving charge, x(t) [84].

While additional filtering is sometimes applied to LArTPC wire signals to remove noise and

wire cross-talk, the signals in LArIAT are sufficiently clean and no filtering is performed.

5.3.2 Hit-finding

The deconvolved signals are fed to an algorithm which searches for pulses or regions of

interest and attempts to fit them to Gaussian functions. A multiplet of fits is attempted if a

single Gaussian doesn’t sufficiently model the shape as seen in the middle plot in Figure 5.4.

When a pulse is successfully fit, each of the component Gaussians is used to create a hit

object. The hit’s properties are taken from parameters from the fit, including the hit charge

which is simply the integral of the Gaussian. Each hit is therefore characterized by an arrival

time and width (in time-ticks), and total charge (in ADCs) [84].
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Figure 5.2: The electronics response of the wires as a function of time (arbitrarily-normalized)
from BNL SPICE simulation of the LArIAT electronics.

Figure 5.3: Simplified representations of the field response function (top) for the induction
(left) and collection (right) plane wires. The bottom plots show real detector signals in solid
lines and the simulated signals in dotted lines [84].
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Each hit’s time (t) is corrected based on offsets to account for the pedestal region of the

readout (i.e., samples prior to the sample corresponding to the trigger time), as well as the

anticipated drift time between planes. We then map the hits into a 2D space defined by a

wire coordinate (W ) and a drift coordinate (X),

Wire coordinate: W =







(wire number) × 0.4 cm, collection plane

(wire number - 240) × 0.4 cm, induction plane

Drift coordinate: X = t× ve,

where 0.4 cm is the spacing between adjacent wires and ve is the electron drift velocity.

Note that care is taken to take into account the number convention for the wire planes

which assigns wires 0-239 to the collection plane and wires 240-479 to the induction plane.

We will refer to this wire-drift coordinate space as W-X space moving forward.

5.3.3 Charge clustering and 3D track reconstruction

Line-like groups of hits are identified using a trajectory-based clustering algorithm [85].

This algorithm steps along collections of hits in a 2D wire-time space for each plane and

creates trajectory points by sequentially adding nearby hits, updating the direction of the

trajectory along the way. Whether or not a new hit gets added to the trajectory depends

primarily on the charge of the hit compared to the average of recently-added hits; how well

the hit aligns with the current trajectory; and the angle between the two lines formed from

a small collection of hits before and after the hit being considered. All the hits added to a

trajectory are then aggregated into a single cluster.

The collection of 2D clusters from both wire planes are then provided as inputs to a 3D

track-finding algorithm [86]. To do this, a 3D trajectory is determined such that it minimizes

a measure of the distance between its 2D-projections onto wire planes and the actual 2D hits
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observed for all wire planes simultaneously. The result is a collection of 3D track objects,

each characterized by some number of xyz-points or “space points.”

5.3.4 Identification of muon/electron boundary

The signal processing and reconstruction stages up to now are generally applicable to

nearly all kinds of LArTPC events. We now turn to several hit-grouping techniques that are

tailored specifically for the Michel electron topology.

In this first stage, we intend to cluster together all the hits belonging to both the incoming

muon and its decay electron, forming a single contiguous cluster on both planes. To do this,

we require a “seed” hit from which to begin the clustering. The seed hit is naturally taken to

be the hit corresponding to the start of the stopping muon track where the muon enters the

TPC. First, the 3D tracks in the event are evaluated and a stopping muon-candidate track

must be identified in the event. A fiducial margin of 1.5 cm around the active rectangular

volume is defined, and a track is tagged as stopping if its total length exceeds 5 cm and

one of its nodes (endpoints) falls outside of this fiducial volume while the other node falls

within it. There can be any number of passing or contained tracks, but if there is exactly one

stopping track, it is tagged as the candidate muon and subsequent clustering can proceed.

A proximity-based clustering algorithm, designed to crawl along trails of charge in W-X

space starting from the muon entrance point, is now used to group together the hits of both

the muon and electron. First, the charge hits on the wire plane of choice from the tagged

muon-candidate track are looped over and the hit most closely matched in drift position to

the X-coordinate of this track’s starting point (where it enters the TPC) is designated as the

clustering seed. Then, starting at the seed hit, all hits on the plane are looped over and the

next nearest hit (within a 2D distance d < 2.5 cm, where d =
√

∆W 2 + ∆X2) is added to

the cluster. This is repeated until no new hits can be added to the cluster. This clustering

process is then repeated starting again from the seed hit, but this time excluding hits that

were clustered together in the first round. If hits can be added to this new cluster, then it

implies the original clustering procedure was incomplete (this can happen if the true first
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Figure 5.4: (top) Wire signals from a stopping track, and two examples of Gaussian hits fit
to identified regions of interest (middle and bottom) [84].

Figure 5.5: Cartoon illustrating the proximity-based clustering process. Charge hits are
represented as black circles in a 2D space. Clustered hits are shown with a blue outline. The
seed hit is identified by a green star.
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hit from the muon track is not properly tagged as the seed due to incomplete tracking), and

the entire clustering process is repeated using the endpoint of the second cluster as the new

seed. This clustering procedure is depicted in a cartoon in Figure 5.5.

We now employ a technique developed by MicroBooNE in their analysis of Michel elec-

trons [34], with several modifications to account for LArIAT’s smaller active volume. Each

hit in the cluster is assigned a distance value (s) corresponding to the projected 2D dis-

tance of that hit along the cluster’s trajectory (in W-X coordinate space). A smoothed-out

profile of charge (q) of each hit is constructed by calculating the local truncated mean in

a neighborhood surrounding each hit along the cluster trajectory, truncating some fraction

of both the highest- and lowest-charge points to minimize fluctuations from outliers. An

example of a charge profile for a cluster in data is shown in the middle plot of Figure 5.6,

with the truncated mean hit charge represented by the blue line while the dotted black line

traces the charge of each individual hit.. The blue points connected by a solid blue line show

the truncated mean along the cluster, while the dotted black lines trace the charge for each

individual hit.

A profile of the local linearity (sometimes called the covariance) is also computed. The

linearity χ2i at hit i within a cluster is computed as:

χ2i =
1

Nσxσw

∣
∣
∣
∣
∣
∣

i+b∑

i−b

[
(Xi − X̄) × (Wi − W̄ )

]

∣
∣
∣
∣
∣
∣

(5.3)

where b is the number of hits defining the local neighborhood window, N = 2b + 1 is the

total number of hits in the neighborhood, and σx and σw are the standard deviations of the

X and W coordinates, defined generically as

σv =

√
√
√
√
√

i+b∑

i−b
(Vi − V̄ )2

N
(5.4)

The mean values used are always the mean within the defined neighborhood, V̄ =
∑i+b

i−b V/N .
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An example linearity profile is drawn in the bottom plot of Figure 5.6.

Using these two profiles, the boundary point between the muon and electron portions of

the cluster is determined. A procedure is followed exploiting the muon’s Bragg peak together

with the kink formed by the decay electron:

1. The maximum in the truncated mean charge, 〈q〉t, is first located. To avoid edge effects

in the truncation process where outlier hits at the edges are not properly truncated,

the first and last two points in the cluster are excluded. The hit with the maximal

q within a region following (and including) this point is identified as the candidate

boundary point.

2. If the local linearity at this boundary hit or at least one of its adjacent hits is below

some threshold, χ2thresh, then this is declared the boundary hit. This ensures the hit

occurs at or near a “kink” in the cluster likely corresponding to the start of the decay

electron. The threshold of maximum allowable linearity at the identified boundary (or

adjacent samples) is nominally χ2max = 0.8.

If a boundary is identified, the cluster is divided up into a muon-track segment and an

electron-track segment. In order to define a terminal muon direction vector in 2D W-X

space, a line is fit to all muon’s hits near the end of the track (separated by less than 20 hits

from the end point) with local linearity above some threshold, χ2 > 0.8.

5.3.5 Michel electron shower formation in 2D and 3D

A vector is fit to hits in regions of high local linearity at the end of the muon track (using

a maximum of 20 hits) to determine the terminal direction of the muon, ~dµ. A second vector

corresponding to the outgoing electron, ~de, is then drawn from the muon endpoint to the

charge-weighted mean (in W-X space) of the electron-tagged hits. The 2D decay angle (θ2D)

is defined as the angle between ~dµ and ~de. All hits included in the electron-tagged portion

of the cluster, in addition to all other previously-unclustered hits falling within a 2D “cone”
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Figure 5.6: An example representation of the 2D Michel clustering procedure on the collection
plane. In the top plot, wire hits are represented as black circles, and the smaller blue dots
indicate hits that were included in the original combined µ+e cluster. The green star marks
the seed hit, while the red star marks the identified muon endpoint based on hit charge and
linearity conditions described in the text. Hits included in the final Michel electron shower
are circled in orange.
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Figure 5.7: Clustering examples on the collection plane. See Figure 5.6 for an explanation of
symbols. Note that charge has been expressed in units of electrons (e−); the ADC-to-electron
conversion factor is introduced in Chapter 6.
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Figure 5.8: Clustering examples on the collection plane. See Figure 5.6 for an explanation of
symbols. Note that charge has been expressed in units of electrons (e−); the ADC-to-electron
conversion factor is introduced in Chapter 6.
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Figure 5.9: The difference in hit times between the collection and induction planes for hits
identified as the muon endpoint in events where a muon-electron boundary was identified on
both planes. The peak is fit to a Gaussian (red line).

with opening angle δθ = 30◦ directed along ~de, are grouped into the Michel electron shower.

In Fig. 5.6, hits belonging to the electron shower are outlined in orange. In principle, this will

include both the direct ionization from the electron as well as any displaced charge deposited

by bremsstrahlung photons emitted by the electron in the EM showering process [87]

The 2D clustering and shower reconstruction steps discussed up to now are repeated on

both the collection and induction wire planes. We attempt to form 3D space points within

the shower by combining information from both wire planes. If a shower is successfully

reconstructed on both planes, inter-plane hits separated in time by less than some threshold,

defined by their respective hit widths σh (∆ <
√

(σind.h )2 + (σcoll.h )2)), are paired up starting

with those that are most closely-matched in time. To determine if there is a timing offset

between the planes that hasn’t been corrected, we plot a distribution of hit time differences

between hits identified as the muon endpoint on each plane, shown in Figure 5.9. A Gaussian

fit to the peak of this distribution suggests an offset of only −0.03±0.01 µs, indicating good

inter-plane time alignment.

For each pair of matched hits, a Y and Z coordinate is calculated from the intersection
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of the two wires. Together with the drift coordinate X, a full 3D space point is thus formed.

5.4 Optical reconstruction

The reconstruction of signals from the two cryogenic PMTs is now addressed. This process

involves several steps necessary to remove noise and overshoot, followed by gradient-based

optical pulse-finding. The identification of the characteristic Michel electron topology, de-

fined by two pulses delayed by ∼ 2.2 µs, is described.

5.4.1 Waveform cleanup

PMT waveforms are first truncated from their full size of 28672 samples down to the first

18000 samples for faster processing. In order to minimize electronic fluctuations that could

fake hits in the signal gradient scan to follow, the waveform is “smoothed” in that each

sample is replaced by the average of that sample and the two adjacent. There is a period

of 8.4 µs (a “front porch” or pedestal region) preceding the sample corresponding to the

trigger time in each waveform, and the Michel coincidence gate plus its delay extend to a

maximum of about 7.3 µs prior to this trigger time. Therefore, the waveform pedestal and

its RMS is calculated using the first 1 µs of the waveform, since this region is unlikely to

include activity related to the event. This pedestal is subtracted from the full waveform.

5.4.2 PMT overshoot correction

An overshoot was observed in signals from the larger HMM PMT in the Run IIB dataset.

To prevent a systematic mis-measurement of pulse areas, we craft a correction for this over-

shoot by exploiting an observed linear relationship between the integral of the peak and

the amplitude of the overshoot. Inverted average HMM waveforms were compiled for nine

ranges of pulse amplitudes and each waveform was fitted from 9 µs to 18 µs to the function

f(t) = −Ae−t/τr . The baseline recovery lifetimes τr from all fits were averaged together to

determine the average lifetime τaver = 11.5 µs. The fits were repeated with τr fixed to τaver
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Figure 5.10: Overshoot in the Hamamatsu (HMM) PMT average waveform from Run IIB.

and the normalization parameter A was recorded for each. A linear relationship shown in

Figure 5.12 was found between this overshoot normalization and the integral (I50) of the

pulse peak, integrated in the range t = [−5, 45] ns,

A(I50) = 0.2777 + 0.0002466 × I50. (5.5)

To apply this correction during reconstruction of optical data, each pulse in the waveform

(found using the hit-finding methods to be described later) is first identified. For each found

pulse i, a baseline correction of

fBScorr(t) =







0, t < ti

−A · exp
(−(t−ti)

τaver

)

, t ≥ ti

(5.6)

is subtracted from all samples, where ti is the time-zero of the specific pulse. Since this is

repeated for each pulse, the total baseline correction is cumulative across the waveform.

5.4.3 Adaptive running baseline subtraction

To remove slow oscillations in the PMT signal s(t), a modified running baseline is com-
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Figure 5.11: Individual exponential fits to the overshoot in average HMM PMT waveforms
for all 9 amplitude ranges. The blue line shows the original averaged waveform, and the
green line shows the waveform after the overshoot correction [87].

Figure 5.12: Linear fit of 50 ns pulse integrals (integrated between t = −5 ns and t = 45 ns)
to the undershoot normalization A extracted from each fit [87].
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Figure 5.13: Tagged regions of a sample waveform to be used in the calculation of the running
baseline (left), and the resulting running baseline for an example waveform shown (right).

puted with a gradient-based technique which masks out regions where activity is detected.

This process is illustrated in Figure 5.13. First the signal gradient g(t) is computed using a

formula that replicates a 5th-order derivative,

g(ti) =
1

12

[

f(ti−2) − 8f(ti−1) + 8f(ti+1) − f(ti+2)
]

(5.7)

The RMS of the gradient, σg, is calculated over a baseline region 1 µs in length. Samples with

s(t) > 5 ADC or g(t) > 3σg are marked as the start of regions containing activity, and the

following 50 samples are designated as “active.” A standard running baseline is computed

over the inactive or “quiet” regions using a truncated mean taken from quiet regions that

lie within 50 clock ticks of the current sample. A linear extrapolation extends this running

baseline across tagged active regions, connecting the first sample of each quiet region to the

last sample of the preceding quiet region. This running baseline is then subtracted from the

waveform [87].

5.4.4 Optical hit-finding

To locate hit candidates, the gradient using Equation 5.7 is computed at each sample
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in a PMT waveform and samples with gradient values higher than a specified threshold are

tagged as hit candidates. The RMS of the gradient in a region preceding the hit (ranging

from -100 ns to -5 ns) is calculated and the hit is eliminated if the gradient’s local maximum

in the neighborhood of the hit candidate sample fails to exceed a multiplicative factor (×3)

of the RMS. Hit candidates separated by less than a specified minimum distance from the

preceding hit are eliminated.

5.4.5 Hit reconstruction and muon decay time measurement

The goal of optical hit processing is to determine properties like pulse amplitude, inte-

gral(s), and width for each of the identified hits. The signal gradient g(t) is thresholded to

identify optical hits. If there are exactly two hits found, the muon decay time ∆T is mea-

sured as the difference between the time of the first (muon candidate) and second (Michel

electron candidate) pulse. An integral of the first 100 ns of the electron candidate pulse

determines the prompt light S100; an integral over 7 µs determines the total light S.

5.4.6 Muon late-light subtraction

Light produced by the stopping muon will overlap with the Michel candidate integration

window to varying degrees depending on the decay time ∆T . For events with a large enough

time separation between the muon and electron pulses, we attempt to correct for this muon

late-light contamination by fitting the region of the muon’s late light between 400-1800 ns

and extrapolating the fit forward.

First, the late-light signal following the muon pulse is binned into six regions with varying

widths ranging between 100 ns and 300 ns (400-500 ns, 500-700 ns, 700-900 ns, 900-1200 ns,

1200-1500 ns,1500-1800 ns). The center of each bin is treated as the t-coordinate and the

signal density (ADC/ns) per bin is calculated by dividing each bin content by its width. A

fit is performed to a function of form:

Slate(t) = Ae−t/τ ′t +Be−t/τ∗ (5.8)
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Figure 5.14: An inverted ETL PMT waveform with a zoomed-in view of the Michel candidate
pulse for an event with decay time ∆T ≈ 2.5 µs. The violet trace in the bottom plot is the
signal gradient, with a dotted-red line signifying the identified location of the hit. The solid
red line overlaid on the PMT signal plot is the estimated (fitted) muon late-light component
which is subtracted off in the integration of the Michel pulse.
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where A is treated as a free parameter and τ ′t is taken as the effective quenched triplet-state

excimer lifetime inferred from fits to average muon waveforms in the range of 0.4-2 µs (see

Appendix A). The second term in Slate(t) is meant to account for contamination from the

component of TPB fluorescence with the longest lifetime, τ∗ = 3.55 µs [67], since this extra

contribution is not effectively handled by a simple single-exponential fit. The normalization

factor B is fixed to values based on fits of Equation 5.8 to average waveforms from an

independent sample of cosmic muons that cross the TPC without stopping. See Figure 5.15

for a more detailed description of this procedure.1

This fitted function Slate(t) is extrapolated through the integration regions of the Michel

pulse to get an estimation of the contamination, which is then subtracted off the raw integrals

accordingly. Corrected integrals for the “total light” S (7-µs integral) and the “prompt light”

S100 (100-ns integral) for the Michel electron are saved.

5.5 Muon decay time spectra and measurement of capture lifetime

Here we present the resulting muon decay time spectra from our two datasets, using the

results to validate the sample and estimate its purity. In order to enhance statistics and

minimize optical hit-finding effects that manifest at small ∆T , we use a slightly different

event selection for measuring the muon decay time spectrum. Since there is no intention to

use any calorimetric information from the wires here, the only event selection requirement is

that a stopping 3D track was identified with an optical topology consistent with a delayed

Michel electron decay. (The result when also requiring a 2D shower on the collection plane

can be seen in Table 5.2.)

When plotting ∆T against optical hit characteristics such as hit amplitude, we notice

anomalies at low-∆T (see Figure 5.16). This is especially prominent in Run IIB, with two

distinct populations of low-amplitude events contaminating very specific values of ∆T . It’s

1. It’s unclear why there is a data-MC discrepancy in the ratios of the slow TPB component to the fitted
LAr scintillation component. Possible causes are waveform cleanup and smoothing techniques which may be
inadvertently suppressing photons in the tails.
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Figure 5.15: Fits to the average waveforms of crossing muon events. First the region 0.4-
2 µs is fit to a single exponential to extract τmeas. Then, Equation A.1 is used to estimate
the true quenched triplet lifetime τ ′t . A fit to Slate(t) from Equation 5.8 is then performed
over a larger time range, 0.4-7 µs, with parameter τ ′t fixed. The ratio of the integral of the
second component of the fit to the integral of the first component is computed and used to
constrain the normalization parameter B in fits during the late-light subtraction procedure
in reconstruction: B = fAτ ′t/3550, where f = IA/IB .
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Figure 5.16: Amplitude of Michel-candidate optical pulses plotted against the measured
decay time for the Run I (left) and Run IIB (right) datasets. For Run I, events are ac-
cepted with amplitude > 80 ADC (on the ETL PMT). For Run IIB, we similarly impose an
amplitude cut of 130 ADC for the HMM PMT and 45 ADC for the ETL PMT.

unclear what could be causing this (afterpulsing, reflections, noise hits, etc..). We place cuts

on pulse amplitude to exclude these anomalous events which would otherwise distort our

decay time fits. We can safely place these cuts since decay time and and the energy of the

Michel electron are independent of one another.

Resulting muon decay time spectra are shown in Figure 5.17. Each distribution of decay

times is fit to a double exponential function,

f(t) =
[

Cµ+ × e
−t/τµ+

]

+
[

Cµ− × e
−t/τµ−

]

+B, (5.9)

where B is a constant background term, τµ+ is the positive muon lifetime of 2197 ns [79],

and τµ− is the effective lifetime of negative muons decaying in orbit from muonic Ar.

In Run I, the measured effective negative muon decay lifetime (τµ− = 504 ± 40 ns) is

significantly lower than the expected theory value of 615 ns. This is likely due to only

one PMT being used during this Run. Without a second PMT to cross-check and verify

true scintillation pulses, this decay time spectra is likely to be contaminated with events at

low-∆T due to accidental noise hits being found within the late-light of the muon.

From the Run IIB dataset, we find τµ− = 626 ± 48 ns, which suggests a muon capture
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Figure 5.17: Muon decay time data for Run I (left) and Run IIB (right) datasets. In Run
I, only one PMT was used. Without a second PMT to verify true scintillation pulses, the
Run I data is more likely to contain accidental noise events that will warp our spectra.

lifetime of

τc = 871 ± 93 ns,

in agreement with the theoretical expectation and previous measurements [80, 81]. The

corresponding capture probability from our data is

Pc =
kc

ktotal
=

(

τc
τµ−

)−1

= 71.8 ± 2.2%.

The flat background term, B = 40 ± 6 events/bin, comprises ≈2740 events integrated

across the relevant decay times. We therefore estimate the contamination from non-Michel

events to be < 5%. Additional event quality cuts are expected to improve upon this purity

in the final selected sample used for calorimetric studies presented in Chapter 8.

We can use the relative normalization of the µ+ and µ− populations to estimate the

cosmic muon charge-ratio in our sample,

µ+

µ−
=
Nµ+

Nµ−
=

Cµ+τµ+

Cµ−τµ−(1 − Pc)−1
(5.10)
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Table 5.2: Summary of results for the negative muon lifetime.

Selection Run I Run IIB
1 stopping trk + optical ID 504(40) ns 626(48) ns
1 stopping trk + optical ID + 2D shower 511(56) ns 662(62) ns

where Cµ+ and Cµ− are the normalization factors for the two exponential decay components

in the fit. The result,

µ+

µ−
= 1.27 ± 0.16,

is consistent with a previous measurement of µ+/µ− = 1.25 from CMS [93], which used a

sample of muons in the momentum range of 5 GeV/c to 1 TeV/c. Our sample probes the

lowest-energy tail of the distribution since the muons must be low enough in energy to stop

in the 40-cm-tall LAr active volume of the LArIAT TPC.

The optical hit-finding procedure may have an efficiency that is a function of ∆T , par-

ticularly for the Hamamatsu PMT due to its overshoot. Michel electron pulses that closely

follow the µ pulse may suffer from a suppressed signal response as the PMT recovers and the

dynodes return to their nominal voltage. A full and accurate simulation of the PMT elec-

tronics would need to be carried out to evaluate the impact of this effect on our measurement.

For the time being, our cut at higher pulse amplitudes should mitigate this time-dependent

effect.
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6

Detector Calibrations

Here we discuss the calibration factors needed to reverse detector effects (like drift attenua-

tion and losses due to propagation) and convert raw signals, in units of ADCs, into physical

quantities like electrons or photoelectrons (pe). Such corrections are an essential component

in the calorimetric reconstruction presented in Chapter 8.

6.1 Charge-based calibrations

First we describe the calibrations necessary for reconstructing charge, including (1) correct-

ing for electron attenuation from impurity quenching; (2) addressing non-uniformities in the

responsiveness of wires across the collection plane; and (3) extracting the electronics calibra-

tion factor needed to convert ADCs from integrated wire pulses into a quantity of collected

electrons.

6.1.1 Charge attenuation lifetime during drift

As noted in Section 3.3.1, electrons in LAr will attach to residual electro-negative contam-

inants, leading to an attenuation factor of C/C0 = exp(−t/τe) where C0 and C are free

electron concentrations at the site of deposition and at the anode wires, respectively.

Samples of cosmic muons crossing the full diagonal of the TPC, triggered by a pair of

scintillator paddles arranges outside the cryostat, are used to measure τe throughout the

course of the experiment. Since the muons are passing through the TPC, we assume they

are uniformly MIP-like in their energy deposition density throughout their trajectory. The

full ≈320 µs drift time is divided into 10 bins and values of charge deposition density dQ/dx

measured along the tracks are added to separate histograms for each bin. Each histogram

is fit to a convolution of a Landau (the shape of the true distribution of dQ/dx expected)

and a Gaussian (detector resolution/smearing effects). The most probable value (MPV)
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Figure 6.1: Electron lifetimes in LArIAT measured over different run periods.

from the Landau in each fit is plotted against the average drift time of the bin and a falling

exponential is fit to extract τe. This procedure is described in more detail in [69, 88]. The

values of τe measured for LArIAT’s different run periods are plotted in Figure 6.1. Visible

in this plot are several periods of time during which the lifetime was observed to rapidly

decrease due to unexpected sources of contamination.

6.1.2 Wire-by-wire charge response uniformity

Variations in the average response (i.e., signal amplitude) for lifetime-corrected MIP

signals across the wire planes was observed. Specifically, the MPV of dQ/dx distributions

varied. A table of correction factors was compiled, the entry for each wire set to the mean

MPV across the plane divided by the MPV observed for that wire. Raw signals from the

wires are scaled by these correction factors on a wire-by-wire basis prior to any deconvolution

or hit reconstruction [89].

6.1.3 Charge response amplitude using stopping muons

Understanding the charge response of wires in a LArTPC is essential for calorimetry.
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To calculate the number of drift electrons that were collected to produce a wire hit, we use

an ADC-to-electron conversion constant which is a property of the read-out electronics and

signal filtering process. These plane-specific calibration constants, Ccal
e , represent the average

number of integrated ADC units for each detected electron and are used to reconstruct the

charge Q of each hit:

Q [e−] =
Hit area [ADC]

Ccal
e [ADC/e−]

(6.1)

The charge response can be determined through charge injection studies in a dedicated

electronics test-stand, or by looking at the energy deposition rate (dE/dx) from known

particles in data. As discussed in Chapter 3, the rate at which charged particles deposit

energy depends on their mass and momentum, and the distribution of energy loss follows

a skewed Landau for particles traversing some thickness of material (see Equation 3.3 and

Figure 3.3). As muons in the Michel electron event sample slow down and lose momentum,

they deposit an increasing amount of energy per unit length as predicted by Bethe-Bloch.

This results in a well-known pattern of increasing charge deposition density along the track

prior to the muon’s stopping point, known as a Bragg peak, which can be fit from data to

tune the charge response constant.

First we recontruct dQ/dx, in units of ADC/cm, along well-reconstructed stopping muon

tracks identified in the cosmic Michel electron sample. This profile is then fit to the expected

dQ/dx in units of e−/cm calculated using Equation 3.3 and the Modified Box recombina-

tion model, with the calibration constants for converting ADC to electrons treated as free

parameters. We describe the stages of this procedure in more detail below [69, 90]:

• Track selection: If a muon-electron boundary in the 2D Michel clustering from

Chapter 5 is successfully identified on both the collection and induction planes, and if

these hits align in time within a threshold defined by their respective hit widths σh

(δt <
√

(σind.h )2 + (σcoll.h )2)), then they are used to form a 3D space point, Pbnd. We

require that the distance between Pbnd and the endpoint found from 3D-reconstructed

track (Section 5.3) associated with the muon Ptrk, projected along the direction of 3D
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Figure 6.2: Distribution from data (left) of separations between the reconstructed endpoint
of the stopping muon track and the 3D Michel boundary point identified through the custom
clustering procedure, projected along the direction of the reconstructed 3D track. On the
right is the difference (in MC) between the reconstructed and true muon endpoint, projected
along the reconstructed track direction, for events passing the quality selection cut illustrated
by the orange dashed lines on the left plot.

track ~Vtrk, is less than 2 mm:

− 2 mm < (Pbnd −Ptrk) · ~Vtrk < 2 mm (6.2)

Figure 6.2 (left) shows a distribution of this projected separation metric over a sample

of Run II data events. The dashed orange lines indicate the bounds of the quality

selection cut. The right plot in Figure 6.2 shows the true muon endpoint resolution

projected along the track direction, (Ptrk − Ptrue
µ ) · ~Vtrk, for the events passing the

endpoint quality cut described above. This distribution indicates that, on average, the

reconstructed muon endpoint stops short of the true muon endpoint by about 1.6 mm

with an RMS spread of 3.5 mm.

• Measuring dQ/dx Once we have selected a well-reconstructed track, dQ/dx (cor-

rected for τe) and residual range r along the track is recorded. Hits are only used if

they have an inclination angle (relative to the electric field) of θinc > 20◦ to match the

sample used by ArgoNeuT in their parameterization of the Modified Box recombina-

tion model [58]. The hit’s pitch (dx) must also be less than 1.2 cm. Hits’ dQ/dx fill a

85



Figure 6.3: Reconstructed dQ/dx and residual range along selected stopping muon tracks.
Shown below this histogram are several example fits to dQ/dx using a Landau convoluted
with a Gaussian.

2D histogram with r on the X-axis and dQ/dx in units of ADC/cm on the Y-axis.

Slices of this 2D histogram are made along the residual range axis in range 3-25 cm, and

projections of dQ/dx for each group of residual range bins are made. Each distribution

is fit to a Landau function convoluted with a Gaussian as illustrated in Figure 6.3.

• Fitting to predicted dQ/dx: We need to know the energy of the muon at each point

along its track in order to calculate the predicted MPV for energy deposition density,

(dE/dx)pred. To do this, we take calculated values of the mean dE/dx for different

residual ranges from a Particle Data Group (PDG) table for muons in liquid argon [91]

and fit them to a simple power law function,

dE/dx = Arb + C (6.3)
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Figure 6.4: Mean dE/dx versus residual range for muons. Points are taken from the Particle
Data Group (PDG) table for muons in liquid argon [91]. The red curve is a parameterized
fit of the form dE/dx = Arb + C.

where r is the residual range (in cm) and A, b, and C are treated as free parameters.

This fit is shown in Figure 6.4. The fit results are

A = 5.477(7) MeV/cm (6.4)

b = −0.5295(16) (6.5)

C = 1.401(7) MeV/cm (6.6)

By integrating Equation 6.3 over the muon’s trajectory starting from its end point

(where r = 0), we derive a relationship for its energy as a function of its range,

Tr =

(
A

b+ 1

)

rb+1 + Cr (6.7)

This relation allows us to use Equation 3.3 to calculate the expected dE/dx MPV,

(dE/dx)pred, at all points along the stopping muon’s track, assuming some average
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LAr thickness x (i.e., hit separation distance in 3D). For this study we use a thickness

of x = 0.67 cm corresponding to the average hit pitch in Run II data for selected muon

tracks. The value of (dE/dx)pred assigned to each group of residual range bins is

determined as the mean of values calculated at both ends of the range: (dE/dx)rpred =
[

(dE/dx)r1pred + (dE/dx)r2pred

]

/2.

The predicted dQ/dx (in ADC/cm) for any dE/dx can then be calculated as

dQ/dx [ADC/cm] = Ccal ×
dE/dx

Wion
×R(dE/dx,E ) (6.8)

where Ccal is the calibration constant (ADC/e−), Wion is the average ionization energy

for liquid argon, and R is the electron-ion recombination survival fraction.

Equation 6.8 is fit to the data, using as data points the MPV from the Landau fits

to dQ/dx at different residual ranges. The residual range offset found from MC in

the right plot of Figure 6.2 (r0 = -0.16 cm) is taken into account. The Modified

Box recombination model is assumed, with its parameters fixed to those found by

ArgoNeuT [58]. Errors on dQ/dx MPV are taken directly from the fits, while the error

on (dE/dx)pred is based on the expected variation due to uncertainty in the muon

endpoint projected along the muon track direction as found from MC (σr = 0.35 cm).

The best fit value for Ccal is taken as the final electronics response calibration result.

These fits are displayed in Figure 6.5.

6.2 Light-based calibrations

We now turn to calibrations needed for scaling of scintillation-related quantities. These

include (1) measuring the effective late-light lifetime; (2) determination of the single photo-

electron response amplitude.
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Figure 6.5: Charge response calibration fits for Run I and Run II using stopping muon tracks.
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6.2.1 Effective late-light lifetime

In order to correct for (and properly simulate) light quenching, information about the ef-

fective lifetime τ ′t of the triplet-state Ar∗2 must be determined. As discussed in Chapter 3

and Appendix A, the actual lifetime we observe in scintillation signals from the PMTs is

the result of a convolution of the Ar excimer decays, physical propagation, and (most im-

portantly) the reemission fluorescence of TPB shown in Table 7.2 [67]. A study using MC

was carried out to derive a simple relationship between τ ′t and τmeas, the measured late-light

lifetime one would find from an averaged waveform (Equation A.1).

Averaged PMT waveforms for the event samples were created, with the samples split

up into groups of 2-3 days in length. The lifetime τmeas was found by fitting the inverted

muon-candidate pulse with a falling exponential in the range 0.4-2 µs. These are plotted in

Figure 6.7. It is not clear why τmeas is observed to be different for the two PMTs in Run IIB,

though it is likely due to the HMM PMT’s gain being set too low during this period. This

difference could also be due to residual effects from the signal overshoot in the HMM which

may reduce the late-light lifetime measured with this PMT (corrections to the overshoot are

discussed in Section 5.4.

6.2.2 Single photoelectron response amplitude

The single photoelectron (SPE) response determines the factor needed to convert inte-

grated charge on the PMTs, in units of ADCs, into the corresponding number of photons

that produced the signal. This value is found using a common single photoelectron (PE)

calibration technique in which the integrals of single PE pulses are added to a histogram and

fit to multiple Gaussians representing the pedestal (noise) hits as well as separate response

distributions expected for the detection of 1PE, 2PE, 3PE, etc. The mean of the Gaussian

corresponding to 1PE is taken as the SPE response.

In LArIAT this calibration is done in-situ by using single PEs in the late-light tails of

scintillation pulses where PEs are likely to be well-isolated in time. Each dataset was divided
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into a series of approximately 3-day-long subsamples, and the SPE was calculated for each

subsample using an algorithm which scans the PMT signal waveform and searches for small

PE-like pulses in regions of the waveform which are sufficiently quiet. Quiet regions are

defined as periods of sustained dead-time (i.e., no samples are observed exceeding 3× the

local signal RMS for some configurable length of time, usually ∼100 samples).

In Run I, there was substantially more electronic RMS noise on the optical signals, which

made the SPE Gaussian difficult to resolve. This was improved in Run IIB by replacing one

of the NIM fan-out modules which resulted in much more easily-resolved SPE responses for

this run period as seen in Figure 6.6. The measured SPE responses over the two Michel

electron datasets are plotted in Figure 6.7. This calibration was performed only for select

periods of time in which data was collected for use in specific light-based studies, including

the Michel electron calorimetry study presented in this thesis. A full calibration profile over

Figure 6.6: Examples of SPE calibration histograms for subsamples from the ETL PMT in
Run I (top) and for both PMTs in Run IIB (bottom).
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Figure 6.7: On the left are plots of the SPE response measured over time for the Run I
(top) and Run IIB Michel electron datasets. On the right, τmeas extracted from fits to the
average waveforms for both datasets. Vertical error bars in both SPE response and τmeas

plots represent the uncertainty on parameters returned by fits.
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the entirety of Run I and Run II has not been carried out.

The advantage of this in-situ calibration is that it provides direct measure of the PMT

gain over time in experimental data-taking conditions. Therefore, any effects on our signals

from the cryogenic temperature and signal propagation through cables is reflected in the

constant we extract. This is a useful way to monitor PMT gains over time so that the high-

voltage can be adjusted if needed. For example, the gain in both PMTs is seen to gradually

decrease over time in Figure 6.7, which prompted adjustments in the PMT HV for the period

of time immediately following this (which is not included in these plots).
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7

Monte Carlo Simulation

An accurate simulation is critical for assessing our achieved energy resolution. In this chapter,

the Monte Carlo (MC) simulation of the LArIAT detector is described in detail. First we

describe how the scintillation photon visibility is mapped out using a photon propagation

MC. Then we discuss the propagation of particles through our simulated geometry and

simulation of energy loss, as well as the replication of charge and scintillation light signals.

Finally, the effect from the inherent bias in the light-based trigger toward more luminous

events is taken into account.

7.1 Simulating photon visibility

Scintillation light plays a prominent role in the analysis of low-energy electrons presented

in subsequent chapters. However, light is complicated to reconstruct due to its propaga-

tion. Unlike ionization electrons, which drift along electric field lines in straight paths to the

anode plane wires (suffering from exponential attenuation from impurity quenching, which

is easily corrected using the arrival time), scintillation photons emanate isotropically from

the interaction and undergo scattering and reflections. An overwhelmingly large fraction of

photons produced by ionizing particles are never even collected by a photodetector. Un-

derstanding the distribution of photon visibility within our detector – i.e., the fraction of

generated photons that are expected to reach a photodetector – is therefore important for

reconstruction purposes. Light collected in an event needs to be scaled up by the inverse of

the event’s average visibility to account for losses during physical propagation.

In addition, a “map” of this visibility is used when simulating scintillation signals. De-

tailed Geant-level simulation of photon propagation is computationally taxing given the

∼O(40,000) VUV photons that need to be tracked for every MeV of deposited energy. A

visibility map acts as a stand-in for the physical propagation stage, allowing us to determine
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the number of detected photons instantly by simply scaling the number of generated pho-

tons by the visibility corresponding to the location of that energy deposit (more on this in

Chapter 8).

In this section we describe how the 3D photon visibility and arrival times are mapped

across the active volume of LArIAT using a standalone MC simulation written in C++. The

dimensions and placement of the TPB foils along the four field cage walls were coded in to

replicate the actual setup in LArIAT as closely as possible. The photocathode windows of

the two PMTs are represented as virtual “disks” suspended 5 cm behind the wire planes.

This code has the advantage of running faster than a full Geant-level simulation due to a

less complicated geometry, less memory overhead, and parameterized particle behavior as

will be described later. This method also allows for easier modification of various properties

related to how (for example) reflections from TPB foils are modeled.

Each photon is first assigned an energy of E = 9.69 eV with a random Gaussian spread

of σ = 0.25 eV corresponding to wavelength λ = 128 ± 8 nm [44]. A random isotropic

starting direction is also chosen. The determination of the photon velocity vvuv and Rayleigh

scattering length LR are based on energy E [eV] and wavelength λ [nm], respectively, using

parameterized functions:

vvuv [cm/ns] = 66.9 − 5.846E (7.1)

LR [cm] = 174.7 − 0.03725λ2 + (1.855 × 10−6)λ4 (7.2)

The functional form for vvuv above was found from a linear fit in the neighborhood of

E ≈ 9.7 eV to a plot of photon velocities generated using the group velocity equation,

vg = c/[n(E) + dn/d(lnE)], where n is the energy-dependent index of refraction for LAr.

The parameterization of LR is a polynomial fit to recently reported values [95] (shown in

Figure 7.1) in the neighborhood of λ = 128 nm, with an average calculated scatter length of

62 cm.
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Figure 7.1: The calculated Rayleigh scattering length in liquid and solid argon as a function
of wavelength taken from [95].

A photon is projected forward in a series of steps whose lengths are drawn randomly

from the distribution, e−x/LR , based on the assigned Rayleigh attenuation length LR. At

each scattering point, a new direction is assigned using a random φ and a θ relative to the

initial direction drawn from a distribution, (1 + cos2 θ) sin θ, that approximates scattering

for low-energy photons. When a VUV photon reaches a TPB reflector foil, it has a chance

of being wavelength-shifted to visible and assigned1 an energy E = 2.88 eV corresponding

to λ ≈ 430 nm), velocity vvis = 24 cm/ns, and Rayleigh scattering length LR = 320 m [95].

Visible photons are propagated similarly through the active volume, undergoing scattering

and reflections. This ray-tracing process continues until the photon fails a reflection efficiency

cut or reaches a PMT face.

Reflections and reemission from TPB are assumed to be Lambertian with a 100% VUV-

to-visible conversion fraction and 95% visible reflection efficiency [96]. Reflections from the

copper cathode are described according to the GLISUR model [92] using a reflectivity of 0%

for VUV light and 17% for visible [97]. Wire plane shadowing is approximated for each plane

using a parameterization of the transmission probability Ptrans, motivated from geometrical

arguments, which depends on the wire pitch (p), wire diameter (d), and the incoming photon

1. The variances in Rayleigh attenuation and velocity are negligible for visible light. Therefore we can
safely neglect replicating the spread on assigned visible photon parameters.
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Table 7.1: Relevant parameters used in the standalone photon propagation Monte Carlo.

Parameter(s) Value
PMT-wireplane clearance 5 cm
HMM PMT parameters
– eff. photocathode radius 3.2 cm
– window center coords. (x,y,z) (-5 cm, 0 cm, 47.9 cm)

ETL PMT parameters
– eff. photocathode radius 2.3 cm
– window center coords. (x,y,z) (-5 cm, 0 cm, 40.7 cm)

TPB film on PMT (ETL Run II)
– conversion efficiency 100%
– visible transmittance 80%

TPB reflector foils
– upstream/downstream dimensions lx = 43.18 cm, ly = 40.00 cm
– top/bottom dimensions lx = 43.18 cm, lz = 84.24 cm
– conversion efficiency 100%
– visible reflectance 95%
– reflection model Lambertian (diffuse)

Copper cathode
– reflectivity to VUV 0%
– reflectivity to visible 17%
– reflection model GLISUR
– polish factor 0.80

Wireplane shadowing
– num. planes 3
– wire diameter (D) 0.15 mm
– wire pitch (P) 4 mm

Visible photons
– Rayleigh length (RL) 320 m [95]
– velocity 24 cm/ns

angle projected onto the plane normal to the wires (θ) [98]:

Ptrans =







1 − d
p cos θ cos θ > d/p

0 cos θ ≤ d/p

(7.3)

No reflectivity is simulated at the glass windows of the PMTs, and photons are counted

as detectable once arriving. All the relevant simulation parameters mentioned here are

summarized in Table 7.1.
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We now use this MC tool to generate 3D maps of the fractional visibility (fvis) in LArIAT.

We also encode some information about the arrival time of this light, though this is less

critical for our analysis.

The active volume of the LArIAT TPC is divided into 24 (x) × 20 (y) × 45 (z) 3D

voxels. Within each voxel, N
gen
γ = 300K VUV photons are generated at random positions

within the voxel boundary. The fraction of simulated photons reaching each photodetector,

per voxel, is saved:

fvis(x, y, z) =
number photons generated at position (x, y, z) reaching PMT

N
gen
γ

(7.4)

where the xyz-position is taken as the center of the voxel. Metrics describing the time

distribution of both visible and VUV photons – the minimum (tmin), average (tave), and

RMS (trms) of arrival times – is also encoded in this map.

Projections in 2D of this simulated visibility map for both Run I and Run IIB are shown

in Fig. 7.2. As we expect, the normalization of fvis throughout the volume is ≈ 5 times

higher in Run IIB compared to Run I since both PMTs were operational. Also, the TPB

layer on the ETL in Run II is reflected in the maps through a region of relatively high fvis

extending out from the position of the ETL, x = 40.7 cm. Unfortunately, this dip-coated

layer of TPB was not applied in a very systematic way, so its exact thickness is unknown.

Estimated guesses of its transparency to visible light (80%) were used in the simulation as

shown in Table 7.1.

It is worth noting that fvis encodes only information about the physical geometric prop-

agation of the light within the detector. The time structure of LAr scintillation, TPB ree-

mission, as well as quantum and collection efficiencies of the PMTs are taken into account

during optical signal generation described later in Section 7.5.
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Figure 7.2: Projections of the average fractional scintillation visibility maps for Run
I and IIB. Note the differences in color-axis scale between the two runs, with fvis averaging
at ≈ 0.02% in Run I (where only the ETL PMT is used) and five times higher, ≈ 0.1%, in
Run IIB (where both PMTs are operational).

7.2 Particle propagation and energy loss with Geant4

We now turn to the actual simulation of charged particles. A sample of cosmic muons which

stop and decay within the TPC is generated for comparison to data using LArSoft [78]. The

initial properties of each simulated muon are determined as follows:

1. A random point is chosen in the TPC.

2. An incoming muon direction vector is then determined by drawing a zenith angle from

a cos2 θ distribution with a random φ. From the randomly chosen point, we walk

backward along this direction vector to the point 5 cm beyond the TPC boundary, and

assign this point as the muon starting location.

3. The muon is assigned a momentum vector of random magnitude |p| = 50-300 MeV/c,

aimed toward the point in the TPC chosen earlier. The charge ratio of the simulated µ

flux is set to µ+/µ− = 1.25 based on a measurement by CMS [93] which is confirmed

by LArIAT data in Section 5.5.
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Figure 7.3: True energy and deposited energy distributions for Michel electrons in the
MC sample prior to any trigger efficiency cuts (left), and the energy containment fraction,
Edep/E, plotted against the initial Michel electron energy E (right).

Geant4 [92], incorporated into the broader LArSoft framework, is used to propagate

the muons (and their decay electrons) through the LArIAT geometry and simulate energy

loss. The energy loss is calculated in accordance with the principles outlined in Chapter 3.

Separate MC samples were produced for Run I and Run IIB with detector properties set to

match averages seen in the datasets.

Due to LArIAT’s limited size, many bremsstrahlung photons emitted during the electro-

magnetic showering process escape the LAr active volume before pair-producing or Compton

scattering, or the Michel electron itself will sometimes leave the TPC. Because these effects

limit the detectable energy, the characteristic energy cut-off in the Michel spectrum is not

resolvable without detailed containment corrections which are not attempted in this anal-

ysis. Figure 7.3 compares the distribution of true Michel electron energies and the energy

deposited in the TPC.

7.3 Charge and scintillation production

The energy loss (∆E) and step size (dx) at each step of a particle’s trajectory as simulated

by Geant4 is passed onto native modules in LArSoft which use this information to determine
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Figure 7.4: The Birks recombination model (dashed line) and Modified Box recombination
model (solid line) as functions of dE/dx for two different electric field values. Parameteriza-
tions from fits to data from the ICARUS [55] and ArgoNeuT [58] experiments are used. An
arbitrarily-normalized distribution of dE/dx for Geant4 particle steps is overlaid.

the quantity of free ionization electrons and scintillation photons to be produced.

Deposited energy ∆E is first divided into populations of Ar∗2 excimers (Nex) and electron-

ion pairs (Ni) according to the excitation ratio in LAr, α = Nex/Ni = 0.21 [41, 43]. The

dE/dx of the particle step determines the fraction of free electrons surviving recombination

(R) based on both parameterized models described in Section 3.2. The Modified Box model

(Equation 3.12) is applied for dE/dx '1.7 MeV/cm and the Birks model (Equation 3.9)

is applied for small-dE/dx to avoid the unphysical downturn in the Modified Box model

for LArIAT’s electric field as plotted in Fig. 7.4. The exact transition between these two

regimes is the point in the neighborhood of low-dE/dx at which the models intersect, ≈

1.65 MeV/cm.

The final number of photon-producing Ar∗2 (Nγ) is determined from Eq. 3.15 such that
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the anti-correlation expected between Nγ and Ne is preserved after recombination:

Ne = NiR

Nγ = Nex +Ni(1 −R). (7.5)

Excimers are then divided into fast (singlet) and slow (triplet) populations using ratios from

literature. A singlet-to-triplet ratio of Is/It = 0.51 is applied for muon and electron-induced

ionization while Is/It = 0.3 is used for photon-induced ionization [50, 94].

7.4 Charge drift and signal formation

The simulation of charge drift to the wireplanes is then replicated. Electrons produced at

each step along the ionizing particle’s path are each scaled down based on an electron lifetime

τe which is provided as an input parameter to the simulation and set to match data (see

Chapter 6),

Ndrift
e = Ne exp(−t/τe) (7.6)

where t is the charge deposit’s drift time, calculated as t = x/ve where xi is the X-location

of the deposited charge and ve is the electron velocity in LAr.

The distribution (in time) of arriving charge at each plane is then convoluted with the

electronics response and field response functions (see Section 5.3.1) to generate signals on

the wires. Noise is also added based on a noise frequency profile taken from data.

7.5 Scintillation signal formation

To simulate light quenching due to collisions with impurities (Section 3.3), first the effective

quenched triplet lifetime τ ′t is used to calculate τq = (1/τ ′t − 1/τt)
−1. The value of τ ′t is

calculated from τmeas as described in Appendix A, which is provided as an input parameter

to the simulation and set to reflect the average values from the datasets (see Chapter 6).
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Table 7.2: Measured TPB decay times and relative abundances (adapted from [67]). In the
simulation, the instantaneous component (1-10 ns) is modeled as τ = 5 ± 5 ns.

decay time [ns] abundance (%)
Instantaneous component 1-10 60 ± 1
Intermediate component 49 ± 1 30 ± 1
Long component 3550 ± 500 8 ± 1
Spurious component 309 ± 10 2 ± 1

This τ ′t is used to calculate τq, thus enabling the calculation of the effective singlet

decay time, τ ′s, and the overall yield reduction factors necessary for proper simulation of Nγ

quenching. For typical measured late-light lifetimes in the data, τmeas ≈ 1200 ns (τ ′t ≈ 1120

ns), we expect negligible quenching of the fast-decaying singlet population (τ ′s/τs ≈ 1) and

a 14% reduction in the slower-decaying triplet population (τ ′t/τt ≈ 0.86).

Once quenching of the two excimer populations has been applied, the physical propaga-

tion of the photons to the PMTs must be simulated. This process is folded into the visibility

map constructed in Section 7.1. For each PMT, the fractional visibility fvis corresponding

to the point of charge and light deposition is retrieved from the visibility map. The quantum

and collection efficiencies of the PMTs themselves are then folded into this factor to arrive

at an effective scale factor, feff = fvis × fQE × fCE. The number of photons produced by

the energy deposit, Ne, is then scaled by factor feff to yield the number of detected photo-

electrons, drawing from a binomial distribution to include stochastic fluctuations. Timing

information from the map is also retrieved and each photon is assigned a physical propaga-

tion time tprop drawn randomly from a Gaussian of µ = tmean and σ = trms (if tprop < tmin

a new random time is drawn). The resulting photon arrival time is then a convolution of the

particle’s birth time, the quenched LAr scintillation lifetimes τ ′s and τ ′t , propagation time

tprop, and the TPB decay time constants shown in Table 7.2.
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7.6 Optical smearing and trigger efficiency

The PMT electronics response has not been modeled in our simulation. To reproduce detec-

tor resolution effects, we smear the integrated photoelectron counts from the Monte Carlo.

This is done on an event-by-event basis by randomly varying the raw integrated counts, N ,

based on a two-component resolution factor,

σ =
√

σ2N + σ2T =
√

Nσ2pe + Tσ2RMS (7.7)

where T is the integration time in nanoseconds. The two resolution factors, σpe and σRMS,

are derived from data and described below:

• σN =
√
Nσpe: This factor, proportional to the square-root of the number of detected

photoelectrons, approximates effects from the inherent width of the single photoelec-

tron Gaussian peak from the PMT calibration histograms (see Section 6.2). The av-

erage SPE mean (µ1) and width (σ1) are found for the individual PMTs in each of

the two datasets, and the ratio of the two (µ1/σ1) is set as σpe for the MC sample

corresponding to each respective data sample.

• σT =
√
TσRMS: This factor represents the contribution from RMS noise in the PMT

waveforms and is thus proportional to the square-root of the integration time in

nanoseconds, T . We determine this value by integrating a 1000-ns window in the

pedestal-subtracted baseline/pedestal region of all waveforms in data and extract the

RMS of this distribution in units of PE. Then, following the assumed relationship

σ ∼
√
T , we calculate σRMS = RMS/

√
1000

Figure 7.5 shows an example integrated baseline region used to calculate σRMS from data.

The values of these smearing parameters calculated from each data sample are summarized

in Table 7.3.

We now turn to some additional modifications to the reconstructed light in MC which
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Figure 7.5: Integral of baseline region used to estimate the inherent electronics noise in the
Hamamatsu PMT for Run IIB.

are determined by finding the best-match to the final distributions of prompt photoelectrons

(S100) and total photoelectrons (S) in data. These are discussed below:

• σX [pe] = σx × S: This “extra” smearing contribution is applied only to the total

light integral, S, and is meant to fold in other effects that might distort the data (like

recurrent noise oscillations) which would be hard to model in a natural way using SPE

resolution and waveform RMS noise. The effect of this extra smearing to the total

light distributions is illustrated in Figure 7.6.

• Trigger efficiency parameters P and K: As mentioned previously, the light-based trig-

ger used to obtain our sample introduces a bias toward more luminous, higher energy

Michel decays. To replicate this bias in our MC sample, we define a trigger efficiency

function that returns a probability of accepting an event with prompt light S100,

f(S100) = 1 − 1

1 + (S100/P )K
(7.8)
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Parameter P dictates the approximate cut-off point in the prompt light distribution,

while K controls the sharpness of this boundary. A visual overlay of the (scaled)

trigger efficiency functions with each prompt light distribution from the MC is shown

in Figure 7.7.

• Scaling: Given the number of tunable parameters and approximations used in the

photon propagation simulation (reflection modeling, surface reflectances, wire plane

transparency to visible light), combined with the uncertainty in the reported PMT

collection efficiencies [73], we take the liberty of scaling the light distributions by some

amount to match distributions in data. This is effectively treated as scaling of each

PMT’s global photoelectron detection efficiency.

These four parameters – σx, P , K, and the scale factor – are determined by finding

values best matching data distributions after applying a decay time cut of ∆T > 1.8 µs

and requiring the event to have a successfully reconstructed 2D shower. First the MC

distributions of S100 and S are area-normalized to the total entries in the corresponding

histograms for data. A chi-squared metric with bin content weighting is used to compute

the goodness-of-match between histograms in data and their (normalized) MC counterpart

histograms,

χ2w(A,B) =





N∑

i=0

ai





−1



N∑

i=0

ai(ai − bi)2

(σia)2 + (σib)
2



 (7.9)

where A and B are the data and MC histograms, ai/bi the histograms’ values at bin i, and

σi the error assigned to that bin. For data, σi =
√
ai, but for MC the error is scaled down

due to the area-normalization. For each PMT, the minimization package MINUIT in ROOT

(using the SIMPLEX algorithm) is used to find the three-fold combination of P , K, and scale

factor that simultaneously minimizes the χ2w of the prompt light distribution S100. Then the

minimization is performed over each total light distribution to find the optimal smear factor

σx with the previously-determined trigger efficiency parameters and scale factor fixed. The

resulting distributions after optimization are overlaid with data in Figures 7.8 and 7.9.
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Table 7.3: Smearing, scaling, and trigger-cut parameters applied to the MC samples. Also
displayed are the data-MC χ2w comparison values after minimization for both prompt (S100)
and total (S) photoelectrons.

Run Period Run I MC Run IIB MC
PMT HMM ETL HMM ETL
σpe [pe] – 0.43 0.32 0.43
σRMS [pe/

√
ns] – 0.043 0.024 0.024

σx [pe] – 0.152 0.002 0.238
Trig eff. P [pe] – 25.74 81.31 22.72
Trig eff. K – 9.098 8.271 4.506
Scale factor – 1.016 1.021 0.957

S100 data-MC χ2w – 2.88 1.01 0.53

S data-MC χ2w – 0.91 1.54 1.68

The results of this minimization procedure are displayed in Table 7.3. Similar scale

factors are required on the ETL PMT in Run I and the HMM PMT in Run IIB (+1-2%).

However, we find in Run IIB the ETL PMT needs to be scaled down by about -4%. This

could be due to the TPB film that was applied via dip-coating to the window of this PMT

in Run II. The exact conversion efficiency for VUV photons and the transparency to visible

light of this TPB film is unknown, and in the simulation these values were estimated (see

Table 7.1).
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Figure 7.6: The effect of smearing contribution σX on the total MC light distributions.

Figure 7.7: The trigger efficiency function (red) overlaid with its respective prompt light
distribution for PMTs in both MC samples. In each case the function is scaled arbitrarily
and is drawn only for illustrative purposes. The unfilled distribution shows the prompt light
distribution for all events in MC prior to trigger cuts.
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Figure 7.8: Run I distributions of S100 (left) and S (right) compared to MC after smearing,
scaling, and trigger efficiency parameters are optimized.

Figure 7.9: Run IIB distributions of S100 (left) and S (right) compared to MC after smearing,
scaling, and trigger efficiency parameters are optimized.
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8

Calorimetry Results for Low-Energy Electrons in

LArIAT

Now that we have obtained a reconstructed sample of Michel electrons and have verified

the sample using the muon decay time (see Section 5.5), we turn now to calorimetry. First

we provide a brief overview of the calculation of energy from light and charge, including

the corrections needed on both quantities to compensate for attenuation effects and convert

ADCs to physical quanta (e− or γ). We then present the reconstructed energy spectra for

electron ionization tracks as well as full showers in Run I and Run IIB using the formulaic

constructions of energy. Based on these results, the light yield (pe/MeV) of the LArIAT

TPC is estimated for both Run I and Run II. Next, we prepare a maximum-likelihood fitter

tailored specifically for the Michel electron sample in LArIAT’s Run II and present the

resulting energy spectrum for comparison. MC resolution studies are carried out to gauge

the improvement in Michel electron energy resolution using the three different reconstruction

methods in Run II.

Following this, we use a sample of simulated electrons to determine LArIAT’s energy

resolution for isolated electron showers to better approximate the event topology expected

from low-energy electron neutrino interactions.

8.1 Overview of energy reconstruction methodologies

Energies of Michel electron track and shower objects are reconstructed using three different

methods as briefly described in Chapter 3. We outline these methods below. For the sake

of clarity, quantities of charge (Q) and light (L) are assumed to represent the number of

quanta, whether free electrons (Ne) or photons (Nγ), produced by the ionizing deposit.

• EQ: “charge-only” (Q-only) method. This is the traditional approach which relies
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only on the reconstructed charge, Q. Hits belonging to the electron or its displaced

photon-initiated shower deposits on the collection plane are looped over and the total

charge and charge-based energy are computed:

EQ = (Q×R−1) ×Wion (8.1)

The recombination factor, R = Ne/Ni = 0.69, is chosen using the Modified Box model

assuming an average Michel electron stopping power of 2.3 MeV/cm. This assumption

was used by MicroBooNE in their Michel electron analysis as well [34].

• EQL: “charge-plus-light” (Q+L) method. In this approach, the sum of the col-

lected light and charge together is used to determine the energy deposited. For this

method, only the full electron shower energy can be used since it is impossible to isolate

(in time) the photoelectrons coming directly from the ionization of the electron itself.

To combine light information, we first require that showers were constructed success-

fully on both planes. The 3D space points are looped over and the charge-weighted

average visibility, fvis, is calculated using the fractional visibility maps discussed in

Section 7.1. The total scintillation light, L, is then calculated from the detected light,

S. A scaling is also performed on the late component of the scintillation (ie, > 100 ns)

to correct for quenching effects. We then calculate the Q+L energy as

EQL = (Q+ L) ×Wph (8.2)

Due to the complementarity of light and charge as described in Section 3.2, this math-

ematical construction does not rely on an assumed recombination rate. This makes it

well-suited for measuring energies of extended objects like showers where the dE/dx

(and thus recombination) is difficult or impossible to measure for many of the recon-

structed depositions.
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• Elikelihood
QL : maximum-likelihood method. Here we employ a likelihood-based

hypothesis testing framework which returns the most probable deposited energy that

would result in a particular measured combination of Q and L. We use a simplified

model where each Michel electron event can be represented by just three parame-

ters: energy (E), reconstructed charge (Q), and reconstructed light (L). This method

requires knowledge of the detector’s response, averaged over all spatial positions, as

a function of energy deposited by the electron shower. We achieve this through the

construction of parameterized probability distribution functions (PDFs) which approx-

imate the probabilities of measuring any Q or L given some amount of deposited shower

energy in the TPC. This is explained in more detail later.

8.2 Event selection

A series of selection cuts are made on the data to ensure only well-reconstructed events

contribute to our final physics samples. These cuts can be separated into three categories:

optical Michel double-pulse identification, 2D Michel electron shower identification, and 3D

shower identification. Here we describe each of the cuts in detail.

In all cases, we try to treat data and MC identically. However, many of the optical data

cuts cannot be applied analogously to MC due to the lack of simulated PMT waveforms.

Extraction and reconstruction of the optical data values in MC is thus done in an idealized

way that doesn’t employ waveform corrections, hit-finding, or the integration techniques

discussed in the previous section. Instead, simulated photoelectron arrival time distributions

are used as proxy-waveforms and light yields are taken as the number of counts within the

same integration regions applied to data (with smearing applied) [75].

Prior to reconstruction-based cuts, events are first filtered based on the average wire

signal RMS on the collection plane to exclude unusually noisy events (removes ≈ 2% of

events). Events passing both the cosmic timestamp and wire noise filters are then fed into

a standard reconstruction chain. First wire signals are deconvolved and Gaussian-based hit-
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finding is performed using GausHitFinder. The remaining reconstruction steps are skipped

if either plane has more than 300 hits reconstructed, as this is usually a sign of high noise

or a non-Michel event (removes a negligible number of events, < 0.01%).

Optical Michel identification: The optical data plays an essential role in this analysis.

The PMT signals are used both in the physical trigger described in Section 4.7 and again

in the data analysis to identify Michel-like topologies, reconstruct detected photoelectron

yields, and measure muon decay time. Michel electron candidates must pass a series of cuts

involving the optical data:

• Waveform RMS cut: The baseline region of the PMTs’ waveforms (first 1 µs) must

have a signal RMS that does not exceed some threshold. This excludes unusually noisy

events from our sample.

• 2 optical hits: Require exactly two optical hits reconstructed in each PMT, giving us

a separate ∆Ti for each.

• ∆T matching: The ∆Ti from each PMT must not differ by more than 15 ns.

• Hit width cuts: It was realized that the full-width-half-max (FWHM) of optical hits

could be used to exclude a sizeable fraction of unknown background events that con-

taminate our data samples. Both the muon and electron hit are required to have a

FWHM that exceeds 10 ns.

• 2nd pulse saturation: The candidate Michel pulse cannot saturate the full scale of the

digitizer.

• Decay time cut: The measured ∆T must be greater than some minimum and less than

7200 ns (the approximate length of the coincidence gate plus its delay in the hardware

trigger). The cut requiring a minimum ∆T is particularly important to avoid efficiency

effects that occur at small ∆T near the boundary of the gate delay period. For this
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analysis, the gate delay was set to about 300 ns in the trigger, so a ∆Tmin = 350 ns is

used.

2D shower identification: Several quality cuts are made on the 2D Michel shower re-

constructed from the collection plane, if one was found.

• Cluster size cuts: Nµ ≥ 8, Ne ≥ 4

• Muon linearity cuts: The average local linearity of all the hits in the muon portion of

the cluster must exceed 0.7.

• At least 5 linear muon hits must be used to define its terminal direction vector.

• The 2D decay angle must fall within a defined range, 15◦ < θ2D < 165◦. This cut

removes events where the electron track/shower is co-linear with the muon.

3D shower identification

• Michel electron showers must be reconstructed in both planes. We do not impose the

same level of quality cuts to the induction plane shower as we did for the collection

plane shower, since we do not intend to extract a charge-energy measurement from the

induction plane. We only need some number of hits to construct spacepoints.

• Minimum 3D points: After hit-matching, the number of 3D points constructed (N3D
pts )

must be at least 3.

• The charge-weighted 3D centroid location of the shower must be within a fiducial

volume defined by a 4 cm boundary at the edges of the TPC.

After the above cuts, we impose a final decay-time cut, ∆T > 1.8 µs, to ensure the

reconstructed light in our sample of events is minimally affected by late-light contamination

from the muon pulse. In the optical reconstruction, 1.8 µs also marks the threshold beyond
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which the binned muon late-light correction procedure is applied, so by making this cut we

avoid introducing systematic uncertainties associated with having a mix of events that were

reconstructed differently. We must note here that this cut on ∆T is only imposed to ensure

that good-quality reconstruction of L is possible. The data excluded by this cut are not

necessarily a “background” – they are still perfectly fine Michel electron events in the TPC,

and can thus be reconstructed to extract Q if one wished to do so.

The cut-by-cut event reduction is represented in Tabel 8.1. The fraction of events removed

by each cut is displayed as well. Note that, as mentioned in the text, the events included in

“total events” are actually a mix of all the different cosmic triggers.

8.3 Reconstructing charge and light

The Q for a topology containing N reconstructed wire hits is simply the summation of all

individual charge deposits (qi), each corrected for its drift attenuation based on its drift time

(ti),

Q =
N∑

i

(

qADC
i × exp(ti/τe)

)

× Ccal
e− , (8.3)

where qADC
i is the integrated charge in ADC units of each individual hit, while Ccal

e−
is the

ADC-to-electron calibration constant determined in Chapter 6.

Similarly, we calculate L by summing the detected light S from both PMTs and applying

quenching corrections and scaling to account for losses during propagation,

L =
NPMTs
∑

j

[

SADC × Ccal
pe × f−1

QE × f−1
vis × Cquench

]

j
. (8.4)

The term SADC is the total integrated charge of the candidate pulse on PMT j in

ADC units, after muon late-light contamination has been estimated and removed (see Sec-

tion 5.4.6). The calibration constant Ccal
pe is the inverse of the PMT’s SPE response de-

termined in Chapter 6. The factor fQE folds in the PMT’s quantum and collection effi-
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Table 8.1: Event reduction table for all data and MC samples.
Cut Run I Data Run I MC Run II Data Run II MC
Total events 475,027 1,340,084
Total cosmic events 334,909 (-29%) 1,711,277 568,292 (-58%) 1,694,429
Wire RMS noise cut 301,409 (-10%) 1,711,277 (-0%) 557,671 (-1.9%) 1,694,429 (-0%)
Nhits < 300 per plane 299,334 (-0.7%) 1,711,277 (-0%) 557,558 (<-0.1%) 1,694,429 (-0%)
1 stopping µ-cand. trk 87,155 (-71%) 827,798 (-52%) 179,054 (-68%) 788,529 (-54%)
Optical Michel ID:
– Wfm RMS cut 85,350 (-2.1%) – – 174,341 (-2.6%) – –
– 2 optical hits 69,863 (-18%) 826,088 (-0.2%) 71,605 (-59%) 787,790 (-0.1%)
– ∆T match btwn. PMTs – – – 69,653 (-2.7%) 787,566 (<-0.1%)
– Hit width cuts 54,856 (-22%) – – 68,709 (-1.4%) – –
– 2nd pulse saturation 54,841 (< -0.1%) – – 68,709 (-0.0%) – –
– 350 ns < ∆T < 7200 ns 51,665 (-5.8%) 800,482 (-3.1%) 64,741 (-5.8%) 739,701 (-6.1%)

2D shower ID (coll. plane):
– Cluster bnd. found 33,461 (-35%) 605,107 (-24%) 43,316 (-33%) 559,788 (-24%)

– Nµ > 8, Nel > 4 25,766 (-23%) 494,091 (-18%) 33,479 (-23%) 457,813 (-18%)
– µ linearity > 0.7 24,271 (-5.8%) 479,943 (-2.9%) 31,478 (-6.0%) 445,168 (-2.8%)
– µ dir. fit pts > 5 23,084 (-4.9%) 462,915 (-3.5%) 29,974 (-4.8%) 429,110 (-3.6%)
– 15◦ < θ2D < 165◦ 19,838 (-14%) 403,112 (-13%) 25,932 (-13.5%) 373,788 (-13%)

3D shower ID:
– Shwr ID on both planes 12,545 (-37%) 298,380 (-26%) 17,512 (-33%) 275,539 (-26%)

– N3D
pts ≥ 3 10,055 (-20%) 269,745 (-9.6%) 13,772 (-21%) 249,574 (-9.5%)

– Frac. 3D hits > 0.15 9,771 (-2.8%) 266,542 (-1.2%) 13,456 (-2.3%) 246,715 (-1.1%)
– Centroid fiducial cut 8,573 (-12%) 238,756 (-10%) 12,004 (-11%) 223,191 (-9.4%)

∆T > 1.8 µs 3,881 (-55%) 108,337 (-55%) 5,361 (-55%) 101,090 (-55%)
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Figure 8.1: Run I event cut distributions (top) and distribution of charge-weighted shower
centroids (bottom). Selection boundaries indicated by dashed lines.
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Figure 8.2: Run I event cut distributions (top) and distribution of charge-weighted shower
centroids (bottom). Selection boundaries indicated by dashed lines.
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Figure 8.3: Reconstructed distributions of free ionization electrons (Q) and scintillation
photons (L) for the Run I Michel electron sample.
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Figure 8.4: Reconstructed distributions of free ionization electrons (Q) and scintillation
photons (L) for the Run IIB Michel electron sample.
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ciencies [73]. The visibility and quenching corrections in Equation 8.4 are analogous to the

electron attenuation lifetime corrections applied to get Q in Eq. 8.3 in that we are scaling up

the collected light to account for expected losses due to propagation and impurity quenching.

The average photon visibility fvis is calculated as the charge-weighted average of the

visibility of each reconstructed 3D space point. For PMT j,

fvis =
N3D
∑

i

[
qi × fj(x, y, z)

]
×





N3D
∑

i

qi





−1

.

Here, fj(x, y, z) is the fraction of scintillation photons emanating from the location of each

space point expected to reach the window of PMT j according to the 3D visibility map.

Since the quenching of prompt light from singlet excimer decays is negligible, the cor-

rection factor Cquench is constructed such that only the late component of the total light

is scaled up. We define prompt light simply as the light arriving prior to some time Tpr

(nominally 100 ns for this analysis). The quenching correction factor is thus redefined as a

function of the prompt fraction (fprompt) – i.e., the ratio of the prompt to the total light

integral – as well as the triplet excimer lifetime τt and the effective quenched late lifetime τ ′t

found from fits to data,

Cquench = fprompt + (1 − fprompt) × C late
quench, (8.5)

where the last term is the correction to the late light component:

C late
quench = (τt/τ

′) exp
[
− Tpr(τt − τ ′t)

]
. (8.6)

The distributions of both Q and L for our sample are presented in Figures 8.3 and 8.4.
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Figure 8.5: Reconstructed energy Eion
Q deposited by the portion of the event identified as

the direct electron-induced ionization for Run I (left) and Run II (right).

8.4 Electron energy spectra using charge and light

Here we present reconstructed energy spectra for Michel electrons in LArIAT using Equa-

tion 8.1 for charge-based energy and Equation 8.2 for the combination of charge and light.

First, we reconstruct charge-based energy Eion
Q from ionization deposited directly by the

Michel electron itself, occasionally referred to as the electron ionization track energy. These

deposits are defined as hits that were included in the original electron cluster, excluding the

addition of photon-initiated deposits within the 2D shower acceptance cone. These spectra

are shown in Figure 8.5.

The reconstructed energy of the full Michel electron shower, including both the electron

ionization as well as charge induced by any bremmstrahhlung photons emanating from the

electron, are displayed in Figure 8.6. We assume a uniform recombination survival probability

of R = 0.69 for both electron- and photon-initiated charge depositions.1 In Figure 8.6 we see

1. In actuality the photon-initiated deposits (whether induced through pair-production or Compton scat-
tering) are likely to have a higher dE/dx and thus a smaller fraction of surviving electrons. Monte Carlo
suggests that photon deposits vary considerably in their recombination, with R ≈ 0.59 on average. Attempts
to use different recombination factors for electron and photon depositions did not result in significant changes
in the resulting energy spectrum.
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Table 8.2: Average light yield (LY) in units of photoelectrons per MeV (pe/MeV).
Method Run I Run IIB
Truth (no trigger/fiducial cuts) 3.7 pe/MeV 18.3 pe/MeV
Reconstructed quantities in data 4.3 pe/MeV 17.6 pe/meV
Reconstructed quantities in MC 4.3 pe/MeV 18.3 pe/MeV

a tail extending to lower energies in EQ which is mitigated by the addition of light in EQL.

This underscores the power of EQL – information that would be lost using only charge (either

due to higher-than-assumed recombination, incomplete clustering, or hit thresholding) is

recovered to some extent in the optical data.

We can now use this information to estimate LArIAT’s light yield, or number of photo-

electrons detected per unit energy deposited. The light yield can be measured either from

reconstructed data or, given the good agreement between data and MC, taken directly from

truth-level information in the simulated sample. Results from both methods are summa-

rized in Table 8.2. Fiducial margin cuts applied in the event selection (shower centroid > 4

cm from TPC walls) will bias the light yield measured from reconstructed quantities to be

slightly lower, since the highest fractional photon visibilities occur closer to the TPC bound-

aries where the wavelength-shifting TPB foils are mounted. On the other hand, the nature

of the light-based trigger will bias our selection toward more luminous events. Therefore,

the net bias in the measured light yield using reconstructed events is hard to predict. The

benefit of using the truth-level information is that it is not influenced by the trigger efficiency

and fiducial cuts.

It’s worth noting the match to MC in the spectra in Figures 8.5 and 8.6 are fairly

consistent between the Run I and Run IIB. However, it is known that Run I had generally

poorer data-taking conditions such as higher RMS noise on the wires and the additional

noise induced on the wires by the negatively-biased PMT photocathodes. For this reason,

along with the fact that ≈10 times more physics data in general (used in other analyses)

were collected in Run II than Run I, we will focus only on Run IIB for the remainder of this

analysis as we develop a likelihood fitter and assess energy resolution using Monte Carlo.
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Figure 8.6: Reconstructed energy of the full Michel electron shower for Run I (top) and Run II
(bottom). Equation 8.1 is used to calculate the charge-based EQ (left), while Equation 8.2
is used to calculate energy by directly combining charge and light (right).
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8.5 Maximum likelihood method for Q + L

We now turn to assembling a more sophisticated tool for reconstructing Michel electron

energy from charge and light. We make use of the maximum-likelihood hypothesis technique

which finds the most likely energy that would produce each measured combination of Q and

L given the detector’s expected performance in reconstructing these two quantities. Much

of this section is taken from a paper on this analysis soon to be published [87].

The likelihood of reconstructing a Michel electron event with measured Q and L, given

a true deposited energy E, is given by

L(Q,L;E) = fQ(Q;E)fL(L;E), (8.7)

where f denotes the probability distribution function (PDF) for the measured charge or

light. For each event we seek to find the E that maximizes L, so we perform a minimization

over the negative logarithm:

F (Q,L;E) = − logL(Q,L;E) (8.8)

= − log fQ(Q;E) − log fL(L;E). (8.9)

To determine the energy-dependent PDFs, we first use the Monte Carlo sample (with

trigger efficiency cuts turned off) to assemble histogrammed distributions of reconstructed

charge and light at different values of true deposited shower energy. These “slices” in energy

are made at regular intervals of 5 MeV and are relatively narrow (±0.5 MeV) to minimize

smearing of the distributions due to contributions from events of widely differing energies.

We then find that each L distribution can be fit to a single Gaussian:

f∗L(L) = N exp

[

−(L− µ)2

2σ2

]

.

However, to fit Q, we require two Gaussians – one modeling the central “peak” and another
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Figure 8.7: Examples of reconstructed Q (left) and L (right) distributions for simulated
Michel electrons depositing 30 MeV in the LArIAT TPC. The red lines are fits to the dis-
tribution. For Q the fit is to a double-Gaussian function, while L is fit to a single Gaussian
at all energies. The dotted orange line in Q illustrates the “background” (BG) Gaussian in
the double-Gaussian fit.

that models the more diffuse “background” population of events:

f∗Q(Q) = Np exp

[

−(Q− µp)2

2σ2p

]

+NBG exp

[

−(Q− µBG)2

2σ2BG

]

.

This distinct non-Gaussian distribution in charge is a result of reconstruction effects spe-

cific to the Michel electron sample such as charge overlap between the muon and electron

and incomplete clustering of the Michel shower. Events with Q values that populate the

central peak of these distributions are those that are well-reconstructed. Examples of fitted

distributions at 30 MeV for both Q and L are shown in Figure 8.7, with all nine shown in

Figure 8.8 and Figure 8.9.

The functions f∗Q and f∗L when normalized to unity are equivalent to the PDFs fQ(Q;E)

and fL(L;E) needed to compute likelihood L. In order to extrapolate between the disparate

energy bins used to make the nine fits and predict fQ and fL for all deposited energies,

we model the parameters of each fit as arbitrarily-chosen functions of E over the range of
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Figure 8.8: Reconstructed Q distributions for events of different deposited energies in the
LArIAT TPC. Events are distributed randomly, so each distribution is effectively an aver-
age over all possible locations. The red line is a fit to a double-Gaussian function. The
dotted orange line illustrates the secondary “background” (BG) Gaussian in the total fit.
(Parameters: Npeak = p0, µpeak = p1, σpeak = p2, NBG = p3, µBG = p4, σBG = p5.)
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Figure 8.9: Reconstructed L distributions for events of different deposited energies in the
LArIAT TPC. Events are distributed randomly, so each distribution is effectively an average
over all possible locations. The red line is a fit to a Gaussian function. (Parameters: N =
p0, µ = p1, σ = p2)
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relevant deposited energies (5-50 MeV).

For f∗Q, neglecting the overall normalization (which will be fixed to one), we find that

specific combinations of parameters can be modeled as follows:

[µp]Q = p0 + p1E (8.10)

[σp/µp]Q = p0/E
2 + p1/E + p2 (8.11)

[ABG/Ap]Q = p0 + p1E + p2E
2 + p3E

3 (8.12)

[µBG/µp]Q = p0/E
p1 + p2 (8.13)

[σBG/σp]Q = p0 + p1E + p2E
2 (8.14)

The terms A above refers to the integral of the Gaussian component, A =
√

2πNσ. Sim-

ilarly for f∗L, we are able to reproduce each fit completely with only two parameterizations:

[µ]L = p0 + p1E (8.15)

[σ/µ]L = p0/E
p1 + p2 (8.16)

These fitted parameterizations are displayed in Figure 8.10. Using these, we are then

able to, on average, construct the predicted shape of the distribution of Q and L for events

of any deposited energy. This is illustrated by the parameterization overlays in Figure 8.12.

With fQ and fL defined as the unity-normalized functions f∗Q and f∗L, we now have

all the pieces necessary to construct the event likelihood in Eq. 8.7. Figure 8.13 shows the

resulting spectrum of Michel electron shower energy in Run IIB using this likelihood method,

compared to the spectra for the mathematical constructions EQ and EQL presented earlier.

We see that the likelihood method performs similarly to EQL, though its match to the true

energy deposited is slightly improved.
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Figure 8.10: Parameters describing the charge PDF fQ (top) and light PDF fL (bottom)
modeled as functions of energy deposited in the TPC by the Michel electron shower. The
equations for the fits to fQ parameters are outlined in Equations 8.10-8.14, while those for
fL are in Equations 8.15-8.16.
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Figure 8.11: Charge distributions overlaid with parameterizations.
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Figure 8.12: Light distributions overlaid with parameterizations.
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Figure 8.13: A comparison of the Michel electron shower energy spectrum from Run IIB
reconstructed using the the two simple formulaic constructions, EQ (left) and EQL (middle),

as well as the spectrum using the likelihood fitting technique, Elikelihood
QL (right).

8.6 Monte Carlo energy resolution

With our simulations validated by data, we now use MC to compare the energy resolution

(σ/E) of these three calorimetric techniques. Resolution is a metric for quantifying precision

– but in the analysis that follows, its exact definition is slightly fluid. When characterizing

resolution, we first create a histogram of the energy variance, δE, on an event-by-event basis:

δE =
Ereco − Etrue

Etrue . (8.17)

In an idealized system, δE forms a perfect Gaussian and we take the resolution to be its fitted

width or standard deviation (RMS). However, when the variance takes on a non-Gaussian

shape, as we will see in the Michel electron sample, the resolution becomes ill-defined and

the definition must be modified to fit the situation.

First we attempt to quantify deposited energy resolution for Michel electron events in

LArIAT’s Run II. We then turn to a simulated sample of isolated, fully-contained elec-

tron showers distributed randomly within the active volume to determine the calorimetric

resolution of this topology free from complications brought about by the Michel electron

reconstruction procedure.
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Figure 8.14: The energy resolution of Michel electron events in LArIAT for energies recon-
structed from charge (blue) as well as from both charge and light (violet and green).

8.6.1 Michel electrons

Energy variance histograms for Michel electron events of different true energy deposition from

the Run IIB MC sample are constructed, using the same 0.5 MeV energy “slices” as before

but starting at 10 MeV due to statistical limitations of the Michel spectrum at low energy

(see Figures B.4-B.5 in Appendix B). Due to the double-Gaussian shape in the distribution

of Q for the Michel electrons, these energy resolution distributions take on a similarly non-

Gaussian shape consisting of a central “peak” region of relatively well-reconstructed events

which sits on top of a more diffuse background. In characterizing the resolution, we take

into account both the width of the peak as well as the RMS.

To fit the peak in each energy resolution histogram, we define a fit region spanning from

the peak (the bin with the highest number of counts) to the points on either side of this

peak where the distribution drops to 1/3 the maximum height (a minimum of 8 bins total

is used in the fit, ±4 surrounding the peak). These fits are presented in Appendix B as
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Figures B.1-B.3. In Figure 8.14, the peak width and RMS is plotted against the deposited

energy for each of the three different calorimetric methods for Michel electrons. We see

a drastic improvement in terms of the RMS resolution when using EQL and Elikelihood
QL

compared to the traditional charge-based EQ, a consequence of information being recovered

from events where some portion of the charge is not reconstructed. In the peak region, the

Q + L energies slightly outperform the Q-only energy. The likelihood technique performs

comparably to EQL in terms of the peak width.

8.6.2 Isolated electrons

The Michel electron reconstruction is vulnerable to inaccurate muon-electron boundary de-

termination, muon-electron charge overlap, incomplete shower clustering, and optical con-

tamination from the late light of the muon. Considering these complications, the sample

acts as a poor representation of the low-energy electron showers that would be induced by

supernova or solar neutrinos in a deep underground LArTPC. To better study this simpler

topology, we reconstruct a simulated sample of lone electrons (e−) positioned randomly in

the LArIAT active volume.

The procedure for constructing parametrizable models of Q and L is repeated. We

now require that the electron and all of its shower products remain fully contained within

the TPC, ensuring that all of the electron’s energy is deposited as visible energy in our

active volume. Therefore, we now use the initial energy of the electron (Etrue
e ) as our

“true” energy instead of only the visible energy as we did for the Michel electrons (for

which no containment requirement was applied). Unlike with the Michel electrons, where

reconstruction effects distorted fQ into a non-Gaussian shape, both Q and L distributions for

these isolated showers are well-described by a single Gaussian function at each energy. The

parameters of fQ and fL are modeled as fitted functions of Etrue
e with the same equations

used to model fL previously for the Michels. See Figures B.4-B.5 in Appendix B for a full

array of these fits.
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Figure 8.15: The energy resolution, as defined by Equation 8.18, of isolated electron showers
in the LArIAT TPC under Run II operating conditions.

We now compare the energy resolution of all three calorimetry methods for this sample of

electron showers. To account for any deviations from Gaussian shapes in these distributions,

we incorporate both the width of a fitted Gaussian (σfit) as well as the RMS (σRMS) of the

distribution in our definition of energy resolution by assigning a relative weight (w) based

on the overall goodness-of-fit:

σ =
σfit + wσRMS

1 + w
(8.18)

where w =
√

χ2ν . With this definition, the resolution from variance distributions that stray

from a Gaussian shape (χ2ν > 1) will tend to more heavily weight the RMS rather than the

Gaussian fit. On the other hand, well-behaved distributions (χ2ν ≈ 1) will weight both the

fit and the RMS equally and the assigned resolution will be approximately the average of

the two.

The resulting energy resolution curves for isolated electrons in LArIAT using the three
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calorimetric methods are plotted in Figure 8.15. Each set of points is fit to the function:

σ(E) =
A [%]

√

E [MeV]
⊕ B [%], (8.19)

where the first term (A) is meant to model any noise dependence while the second term

accounts for reconstruction-specific effects related to hit fitting and thresholding that limit

the achievable resolution [55]. Since the resolution in the reconstructed charge now exceeds

that of light due to the simpler charge topology, EQ outperforms EQL. In other words,

adding Q and L together results in a poorer final resolution than what one would achieve

from simply scaling up the charge based on the assumed recombination, Q×R−1. However,

as expected, the best resolution is achieved through the likelihood method which naturally

takes into account the poorer resolution of L through the PDFs which are constructed from

MC. Since fQ(Q;E) is narrower than fL(L;E) at all energies, charge is now “weighted”

more strongly than light in the determination of Elikelihood
QL .

For low-energy electrons from 5-50 MeV, we find that LArIAT achieves an energy reso-

lution characterized as:

Charge-only: σ =
9.6%√
E

⊕ 1.5% (8.20)

Charge and light: σ =
9.3%√
E

⊕ 1.3% (8.21)

8.7 Discussion of systematic uncertainties

Outlined below are a list of effects specific to charge, light, and optical hit timing that are

expected to introduce systematic errors to the results presented so far in this thesis.

Charge-based systematics

• Drift attenuation: τe is used to correct for the attenuation of drifted electrons collected

on the wires and recover the total free charge produced by the ionization. Calibration
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values are calculated for semi-regular time periods over the course of LArIAT’s data-

taking and an average τe is found for each of these periods and saved to a database.

Smearing of reconstructed charge (and thus energy) can be introduced if this time-

based binning is too coarse relative to the true change in τe over time. For the Run IIB

Michel electron dataset, the measurement of τe had an uncertainty of ≈6% from the

fit for each sub-period, each of which was roughly one day long (depending on the

number of through-going cosmics available in that period to make the measurement

as described in Chapter 6). For an average hit drift time of ≈150 µs and an average

lifetime 〈τe〉 = 800 µs, this translates to an uncertainty in the collected charge of about

±1.4%.

• Calorimetry conversion constants: Any offset or uncertainty in Ccal
e , the value used to

convert ADC → e−), would manifest as a linear shift in charge and energy. As shown

in Chapter 6 these calibration constants are measured to good precision (. 0.5%).

• Recombination factor: As discussed, an average recombination scaling factor is deter-

mined from MC for use in scaling up charge deposits in reconstructed Michel showers.

While a uniform value is used for all Michel electron hits, there is in actuality some

variation expected in the recombination rate. This contributes some smearing of the

reconstructed charge, which propagates to smearing in the energy.

• Angular effects: Tracks that deviate too far from 90◦ in angle relative to the electric

field can suffer from calorimetric complications due to extended overlap of drifting

electron and ion clouds [58].

• Misreconstruction of Michel showers: It’s possible for the hit corresponding to the

actual muon endpoint to be misidentified during the clustering stage. If the endpoint

is identified too early in the cluster, Bragg-peaked hits of the muon will be clustered

in with the electron, adding to its energy. Alternatively, an identified boundary that

136



overshoots the true muon endpoint will miss some of the energy deposited by the

electron.

Light-based systematics

• Effects of waveform cleanup techniques: The waveform smoothing, overshoot correc-

tions, and running baseline subtraction may suppress or add to the total detected

light. These procedures may also alter the measured muon late-light lifetimes from

data, which are used in late-light corrections and as input to the MC.

• Muon late-light corrections: We know from MC that even in ideal circumstances,

neglecting noise fluctuations, muon late-light correction described in Section 5.4.6 is

imperfect and fails to fully remove all of the muon light that contaminates the Michel

electron pulse integration region. This is due in part to the complications introduced

by the TPB reemission, which has time constants as long as 3.5 µs. This causes us to

slightly overestimate detected light yields.

• SPE response accuracy: Any error in the single photoelectron (SPE) response measured

on the PMTs will result in an overall linear scaling of light measured in data. Also,

much like the electron lifetime, if SPE response values are not binned with enough

granularity in time, they can introduce a smearing in the detected light integrals if the

true gain of the PMT happens to change more rapidly. For Run IIB, the SPE responses

are measured to very high precision (. 0.3%), though the value is only measured for

3-day-long increments, varying by at most ≈2% between subsequent sub-periods.

• Approximations used in photon simulation: There were many broad approximations

made in the photon propagation simulation described in Section 7.1. An inaccurate

visibility map, either in overall scale or spatial distribution, will lead to inaccurate

simulated light distributions as well as cause distortions in the reconstructed L, since

the 3D visibility information from these maps is used as one of the necessary corrections
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Table 8.3: The largest sources of systematic error on calorimetric reconstruction.

Variable
Estimated Impact
on Energy [±%]

Affected E

Electron lifetime τe 1.4 EQ, EQL
SPE response 2.0 EQL
PMT detection efficiency 2.5 EQL
Wion 1.3 EQ
Wph 5.0 EQL

in converting S into L. The collection efficiencies of the PMTs are quoted as 75− 80%

for the ETL PMT and 90−95% for the HMM PMT, so we can conservatively estimate

an overall uncertainty in the detection efficiency of ±2.5%.

• Incomplete simulation of PMT response: Without a full electronics response simulation

for the PMTs, we must perform a somewhat “idealized” optical reconstruction in the

MC that neglects effects from electronic noise, PMT overshoot, as well as any residual

systematic effects introduced by waveform processing methods discussed in the first

bullet above. We must assume that the artificial smearing of the optical quantities in

MC accounts for these effects.

In addition to these, uncertainties in Wion(= 23.6 ± 0.3 eV) and Wph(= 19.5 ± 1.0 eV)

are propagated to the final calculated energies. Among all of these, the largest quantifiable

sources of systematic uncertainty are summarized in Table 8.3. The total propagated error

is ≈2% on EQ and ≈5% on EQL. These uncertainties are not expected to change the overall

conclusions of our study which are based on relative calorimetric improvements.
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9

Calorimetric Potential in Future LArTPCs

Here we expand the MC resolution studies for isolated low-energy electron showers in order

to determine the relative impact of light-augmented calorimetry for larger LArTPCs with

different wire noise levels and light yields (LYs). For example, DUNE’s baseline design

anticipates a signal-to-noise on the wires of S/N ≈ 10, with LY ≈ 1 pe/MeV [8, 72]. The

Short-Baseline Near Detector (SBND) [7] at Fermilab is capable of LY > 15 pe/MeV for all

drift distances, with the average LY throughout the volume estimated to be ≈100 pe/MeV.

However, results presented here are less applicable to SBND given its surface location and

small size relative to DUNE. Our electron MC sample more closely approximates the quieter

conditions expected in an underground detector, free from cosmic ray pileup, capable of

studying low-energy astrophysical νe.

Several isolated electron samples in LArIAT are simulated with the amplitude of the wire

noise tuned to achieve different S/N ranging from ≈70 (LArIAT Run II conditions) to as low

as ≈7. The simulated LY, or effectively the overall collection efficiency of the photodetectors,

is scaled to replicate several representative values ranging from 2 pe/MeV to 100 pe/MeV. We

neglect the LArIAT-specific optical smearing and instead apply a smearing that replicates the

expected resolution for a system capable of a single photoelectron resolution of σpe/pe = 0.1

as has been achieved in many silicon photomultiplier (SiPM) devices.

We first look to the charge-based energy resolution of the electron ionization, Eion
Q . For

each event, a proximity-based clustering procedure is repeated starting from the wire hit

most closely aligned in drift coordinates (X) with the true vertex of the simulated shower.

Hits included within this cluster are categorized as electron-induced ionization. Here we

use the deposited electron ionization energy as the true energy in the resolution. We also

limit the fit to the peak region of each energy variance histogram to minimize contributions

from poorly-reconstructed events – for example, cases where the clustering stops short of the
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three different simulated samples.
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Figure 9.3: Energy resolution for charge-only energy (EQ) and the light-augmented likelihood

energy (Elikelihood
QL ) for different wire noise levels and light yields. Fits are performed to

function σ = A/
√
E ⊕ B.
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electron endpoint, or photon deposits are accidentally clustered together with the electron.

Some fits to the energy variance distributions for Eion are shown in Figure B.9 (for LArIAT’s

nominal conditions, as an example). In Figure 9.1 the Eion
Q resolution curves for the different

S/N are plotted. The resolution behaves as expected with respect to wire noise, with the

first term in the fit, which scales ∼ 1/
√
E, increasing considerably with noise. The flat

contribution term also increases slightly – a consequence of the increased hit thresholding

required at higher noise levels.

At LArIAT’s operating condition, characterized by low wire noise (S/N = 70), a charge-

based energy resolution of σ/E = 5.6% ⊕ 1.0% is achieved, according to our simulation. At

a noise level closer to what DUNE will experience, a resolution of σ/E = 15.4% ⊕ 1.5% is

achieved for Eion. Since ICARUS also looked only at Eion in their Michel electron studies,

we may compare these results to the resolution they achieved Figure 2.9: σ/E = 11%⊕2.5%.

We now turn to the energy of the complete EM shower. PDFs for Q and L are again

parameterized as functions of true electron energy Ee. We assume here that the resolutions

on Q and L are independent – therefore, we only parameterize fL for each LY and fQ for

each S/N. Examples of fits to the energy variance at different noise levels and light yields are

shown in Figures B.10, B.11, and B.12 in Appendix B. In Figure 9.2 the relative improvement

in resolution of the light-augmented likelihood energy (Elikelihood
QL ) compared to the charge-

based energy (EQ) is plotted as a function of true electron energy for the range of light yields

simulated, assuming a fixed S/N ≈10. Figure 9.3 presents the array of energy resolutions

for each simulated scenario for both EQ and Elikelihood
QL . At a light yield of 2 pe/MeV, L

has virtually no impact on the energy resolution, while at light yields of 10 pe/MeV and

above we find that the addition of L begins to noticeably improve the energy resolution. For

example, at S/N ≈10 we see a +10-20% improvement at 10 pe/MeV, increasing to +20-30%

at 20 pe/MeV and as high as +40-50% at 100 pe/MeV. The improvement relative to the
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charge-only method is more pronounced for worse signal-to-noise [87]1.

It is now instructive for us to briefly relate these results to the topic of astrophysical

neutrino studies enabled in DUNE. As discussed in Chapter 2, energy resolutions of < 10%

and < 7% down to 5 MeV are claimed to be necessary in order to maximize the physics

impact of SN and solar neutrino studies, respectively [11, 12]. At S/N = 10, as seen in the

middle row of Figure 9.3, the SN ν requirement is achieved using only charge. However, at

S/N = 7, the resolution is worse than 10% for Ee . 8 MeV, and a light yield of at least

10 pe/MeV is needed to meet the threshold across all energies. For solar ν, the requirement

is not met at the nominal S/N = 10 for charge-only reconstruction and the the addition of

light is necessary to some extent. The details regarding the specific ramifications of improved

energy resolution each of these studies are beyond the scope of this thesis.

1. Content from this chapter is included in a paper on this analysis which is currently under internal
review, with an anticipated publication date in the Spring of 2018 [87].
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10

Conclusion

LArIAT has demonstrated light-augmented calorimetry for low-energy electrons in a LArTPC

using a sample of Michel electrons from cosmic muons. A dedicated light-based trigger was

implemented to obtain this sample, and an automated reconstruction determined the charge

deposited and light produced by these electron-induced EM showers.

Given complications in the Michel electron charge topology like muon-electron charge

overlap, the addition of scintillation light greatly improves our ability to measure the visible

energy of these events. This is reflected in the energy spectra as well as in both the RMS

and the peak-fitted energy resolutions. This result implies that similarly-complicated events

in LArTPCs, where the charge-energy (EQ) would suffer from clustering or hit-finding inef-

ficiencies, would benefit from the collection of scintillation light. Through light, information

is recovered that is otherwise lost.

We achieve calorimetric improvements even with a relatively simple likelihood fitter mod-

eling only Q and L for events averaged over the whole volume. A more detailed model that

incorporates additional parameters (like shower location and direction) would presumably

perform even better. In principle, if a simulation is sufficiently detailed in its physics – in-

corporating the non-radiative quenching processes that manifest at high ionization densities

(see Section 3.2) – likelihood models can be constructed that accommodate a wide variety

of particle types beyond the low-energy electrons we focus on in this analysis.

Our simulation of the LArIAT detector, having been validated by data comparisons,

is used to estimate the calorimetric performance of DUNE in reconstructing low-energy

electrons. We find that at DUNE’s baseline expectation of LY ≈1 pe/MeV, the collected

light has negligible (if any) impact on energy resolution. However, at LY = 10 pe/MeV,

≈15% improvement in resolution can be achieved for these events, with ≈25% improvement

possible at 20 pe/MeV.
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It should be mentioned that our projections of detector performance are built on as-

sumptions of a relatively uniform LY, which LArIAT achieves through use of TPB-coated

foils surrounding the active volume. A less uniform LY will require greater diligence in

properly modeling the variability in photon visibility across the TPC. In addition, we as-

sume a SiPM-like SPE resolution (≃0.1 pe) and an optical reconstruction that incorporates

photon-counting and selective integration techniques instead of full brute-force integration

of charge.

We hope these results will inspire further discussion on the role light can play in LArTPCs,

not just for astrophysical neutrino physics but for accelerator oscillation physics as well. A

more holistic treatment of reconstruction and calorimetry that exploits the maximum amount

of information possible from neutrino interactions has the potential to extend the physics

reach of these beautiful detectors and impact analyses for decades to come.1

1. Content from this chapter is included in a paper on this analysis which is currently under internal
review, with an anticipated publication date in the Spring of 2018 [87].
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Appendix A

Determining the Quenched Scintillation Lifetime in Ar

Since the measured lifetime from optical waveforms is a convolution of the lifetimes

of the two LAr excimer populations as well as the four components of TPB fluorescence

with lifetimes ranging from ≈1 ns to as high as 3.55 µs [67], a conversion is needed between

measured and “true” τ ′t . A Monte Carlo (MC) study was performed in which PMT waveforms

were generated (incorporating LAr physics, and TPB reemission, and propagation time

within LArIAT) with different levels of quenching applied. A linear relationship was found

relating τ ′t to the measured lifetime (τmeas) from fitting averaged waveforms generated (using

different τ ′t) to an exponential in the range of 0.4-2 µs. The linear fit to results from the MC

study is shown in Figure A.1, with the parameterized relationship given as:

τ ′t [ns] = aτmeas + b, (A.1)

a = 0.965 ± 0.006

b = −41.7 ± 8.6 ns
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Figure A.1: Fitted linear relationship between the true quenched triplet lifetime and the
measured lifetime found from fitting a single exponential to the resulting optical waveform
from 0.4-2 µs.
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Appendix B

Electron Energy Resolution: Supporting Plots

The following pages include supplementary plots relevant to Chapter 8 in the discussion of

energy resolution.

Figures B.1, B.2, and B.3 show the fits to the energy variance histograms for different

bins of deposited energy for the Michel electron events. As discussed in Section 8.6, each

distribution is fit to a Gaussian centered at the peak with a variable fit range defined by

where the distribution drops below one-third the peak amplitude.

Figures B.4 and B.5 show the MC distributions of Q and L for isolated electrons in

LArIAT under nominal Run II conditions. Each is fit to single Gaussian to determine

parameterizations of the charge and light PDFs. Figures B.6, B.7, and B.8 show the energy

resolution fits for isolated electrons, binned by electron energy, for EQ, EQL, and Elikelihood
QL ,

respectively.

Figures B.10, B.11, and B.12 show examples of fits to the electron energy resolution for

several representative cases of wire noise levels and light yields from Chapter 9.
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Figure B.1: Fits to the energy resolution for charge-based energy (EQ) of Michel electron
events in LArIAT.
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Figure B.2: Fits to the energy resolution for combined charge and light energy (EQL) of
Michel electron events in LArIAT.
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Figure B.3: Fits to the energy resolution using the maximum likelihood method (Elikelihood
QL )

for Michel electron events in LArIAT.
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Figure B.4: Gaussian fits to Q distributions for isolated electron showers for nominal LArIAT
conditions at different energies.
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Figure B.5: Gaussian fits to L distributions for isolated electron showers for nominal LArIAT
conditions at different energies.
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Figure B.6: Gaussian fits to the charge-only EQ energy variance (δE) for isolated electron
showers for nominal LArIAT conditions at different energies.
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Figure B.7: Gaussian fits to EQL energy variance (δE) for isolated electron showers for
nominal LArIAT conditions at different energies.
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Figure B.8: Gaussian fits to the maximum-likelihood energy Elikelihood
QL energy variance (δE)

for isolated electron showers for nominal LArIAT conditions at different energies.
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Figure B.9: Fits to energy variance (δE) for the electron-induced ionization track (Eion) for
nominal LArIAT conditions at different energies.
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Figure B.10: Gaussian fits to the energy resolution for isolated electron showers at a light yield of 2 pe/MeV and a signal-to-noise
of 7.
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Figure B.11: Gaussian fits to the energy resolution for isolated electron showers at a light yield of 10 pe/MeV and a signal-to-
noise of 10.
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Figure B.12: Gaussian fits to the energy resolution for isolated electron showers at a light yield of 20 pe/MeV and a signal-to-
noise of 70.
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